Role of Lipids During Fusion of Model and Biological Membranes

  • A. J. Verkleij
Part of the FIDIA Research Series book series (FIDIA, volume 4)


Membrane fusion is an ubiquitous event in cell biology. Some of the important biological phenomena in which membrane fusion is involved are: (i) fusion of the. sperm and the egg membrane which leads to fertilization, (ii) the secretion of neurotransmitters, insulin and other hormones, and digestive enzymes from their respective storage vesicles inside the gland cells, referred to as exocytosis, and (iii) the uptake of viruses and removal of receptor ligands from the surface (receptor-mediated endocytosis). In fact, every biological membrane has the potential to fuse, but this potentiality may be revealed more in one membrane than in another. In most types of intracellular membranes, such as endoplasmic reticulum, coated vesicles, endosomes, lysosomes, and Golgi cisternae, fusion takes place continuously.


Membrane Fusion Fusion Event Coated Vesicle Lipidic Particle Inverted Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahkong QF, Fisher D, Tampion W, Lucy JA (1973) The fusion of erythrocytes by fatty acids, esters, retinol and α-tocopherol. Biochem J 136: 147–155.PubMedGoogle Scholar
  2. Altstiel L, Branton D (1983) Fusion of coated vesicles with lysosomes: measurement with a fluorescence assay. Cell 32: 921–929.PubMedCrossRefGoogle Scholar
  3. Baker PF, Knight DE (1984) Calcium control of exocytosis in bovine adrenal medullary cells. Trends Neurol Sci 7: 120–127.CrossRefGoogle Scholar
  4. Batenburg AM, Rochat H, Verkleij AJ, de Kruijff B (1985) The penetration of a cardiotoxin into cardiolipin model membranes and its applications on lipid organization. Biochemistry 24: 7102–7110.CrossRefGoogle Scholar
  5. Bearer EL, Düzgünez N, Friend DS, Papahadjopoulos D (1982) Fusion of phospolipid vesicles arrested by quick freezing. The question of lipidic particles as intermediates in membrane fusion. Biochim Biophys Acta 693: 93–102.PubMedCrossRefGoogle Scholar
  6. Chandler DE, Hauser JE (1980) Arrest of membrane fusion events in mast cells by quick freezing. J Cell Biol 86: 666–674.PubMedCrossRefGoogle Scholar
  7. Cullis PR, Hope MJ (1978) Effects of fusogenic agents on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature (Lond) 271: 672–674.CrossRefGoogle Scholar
  8. Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559: 399–420.PubMedCrossRefGoogle Scholar
  9. Cullis PR, de Kruijff B, Hope MJ, Verkleij AJ, Nayar R, Farren SB, Tilcock C, Madden TD, Bally MB (1982) Structural properties of lipids and their functional roles on biological membranes. In: Aloia RC (ed): Membrane Fluidity Vol 2, Academic Press, New York, pp 40–79.Google Scholar
  10. Das S, Rand RP (1984) Diacylglycerol causes major structural transitions in phospholipid bilayer membranes. Biochem Biophys Res Commun 124: 491–496.PubMedCrossRefGoogle Scholar
  11. Deamer DW, Leonard R, Tardieu A, Branton D (1970) Lamellar and hexagonal lipid phases visualized by freeze etching. Biochim Biophys Acta 219: 47–60.PubMedCrossRefGoogle Scholar
  12. Gulik-Krzywicki T, Balerna M, Vincent JP, Luzdanski M (1981) Freeze-fracture study of cardiotoxin action on axonal membrane and axonal membrane lipid vesicles. Biochim Biophys Acta 643: 101–114.PubMedCrossRefGoogle Scholar
  13. Hui SW, Steward TP (1981) ‘Lipidic particles’ are intermembrane attachment sites. Nature (Lond) 290: 427–428.CrossRefGoogle Scholar
  14. Lau ALY, Chan SJ (1975) Alamethecin-mediated fusion of lecithin vesicles. Proc Natl Acad Sci USA 72: 2170–2174.PubMedCrossRefGoogle Scholar
  15. Lucy JA (1970) The fusion of biological membranes. Nature (Lond) 227: 814–817.CrossRefGoogle Scholar
  16. Lucy JA (1984) Do hydrophobic sequences cleaved from cellular polypeptides induce membrane fusion reactions in vivo? FEBS Lett 166: 223–231.PubMedCrossRefGoogle Scholar
  17. Luzzati V, Gulik-Krzywicki T, Tardieu A (1968) Polymorphism of lecithins. Nature (Lond) 218: 1031–1034.CrossRefGoogle Scholar
  18. Miller RG (1980) Do ‘lipidic particles’ represent intermembrane attachment sites? Nature (Lond) 287: 166–167.CrossRefGoogle Scholar
  19. Op den Kamp JAF (1979) Lipid asymmetry in membranes. Ann Rev Biochem 48: 47–71.CrossRefGoogle Scholar
  20. Papahadjopoulos D, Portis A, Pangborn W (1978) Calcium-induced lipid phase transitions and membrane fusion. Ann NY Acad Sci 308: 50–66.PubMedCrossRefGoogle Scholar
  21. Schmidt A, Patzak A, Lingg G, Winkler H, Plattner H (1983) Membrane events in adrenal chromaffin cells during exocytosis: a freeze-etching analysis after rapid cryofixation. Eur J Cell Biol 32: 31–37.PubMedGoogle Scholar
  22. Schramm M. Oates J, Papahadjopoulos D, Loyter A (1982) Fusion and implantation in biological membranes. Trends Pharmacol Sci 3: 221–229.CrossRefGoogle Scholar
  23. Taraschi TF, van der Steen ATM, de Kruijff B, Tellier C, Verkleij AJ (1982) Lectin-receptor interactions in liposomes: evidence that binding of wheat-germ agglutinin to glycoprotein phosphatidylethanolamine vesicles induces non-bilayer structures. Biochemistry 21: 5756–5764.PubMedCrossRefGoogle Scholar
  24. Van Dijck, PWM, de Kruijff B, Aarts PAMM, Verkleij AJ, de Gier J (1978) Phase transitions in phospholipid model membranes of different curvature. Biochim Biophys Acta 506: 183–191.PubMedCrossRefGoogle Scholar
  25. Van Venetië R, Hage WJ, Bleumink JG, Verkleij AJ (1981) Propane jet-freezing: a valid ultra-rapid freezing method for preservation of temperature-dependent lipid phases. J Microsc 123: 287–292.PubMedCrossRefGoogle Scholar
  26. Verkleij AJ (1984) Lipidic intramembraneous particles. Biochim Biophys Acta 779: 43–63.PubMedCrossRefGoogle Scholar
  27. Verkleij AJ, Mombers C, Gerritsen WJ, Leunissen-Bijvelt J, Cullis PR (1979a) Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing. Biochim Biophys Acta 555: 358–361.PubMedCrossRefGoogle Scholar
  28. Verkleij AJ, Monbers C, Leunissen-Bijvelt J, Ververgaert PHJ (1979b) Lipidic intramembraneous particles. Nature (Lond) 279: 162–163.CrossRefGoogle Scholar
  29. Verkleij AJ, Leunissen-Bijvelt J, de Kruijff B, Hope M, Cullis PR (1984) Non-bilayer structures in membrane fusion. In: Cell Fusion, Ciba Foundation Symposium 103, Pitman London, pp 45–59.Google Scholar
  30. Wakelam MJO (1983) Inositol phospholipid metabolism and myoblast fusion. Biochem J 214: 77–82.PubMedGoogle Scholar
  31. Wilschut J, Holsappel M, Jansen R (1982) Ca2+-induced fusion of cardiolipin/phosphatidyl-choline vesicles monitored by mixing of aqueous contents. Biochim Biophys Acta 690: 297–301.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • A. J. Verkleij
    • 1
  1. 1.Institute of Molecular BiologyUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations