Skip to main content

Role of Lipids During Fusion of Model and Biological Membranes

  • Conference paper

Part of the book series: FIDIA Research Series ((FIDIA,volume 4))

Abstract

Membrane fusion is an ubiquitous event in cell biology. Some of the important biological phenomena in which membrane fusion is involved are: (i) fusion of the. sperm and the egg membrane which leads to fertilization, (ii) the secretion of neurotransmitters, insulin and other hormones, and digestive enzymes from their respective storage vesicles inside the gland cells, referred to as exocytosis, and (iii) the uptake of viruses and removal of receptor ligands from the surface (receptor-mediated endocytosis). In fact, every biological membrane has the potential to fuse, but this potentiality may be revealed more in one membrane than in another. In most types of intracellular membranes, such as endoplasmic reticulum, coated vesicles, endosomes, lysosomes, and Golgi cisternae, fusion takes place continuously.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahkong QF, Fisher D, Tampion W, Lucy JA (1973) The fusion of erythrocytes by fatty acids, esters, retinol and α-tocopherol. Biochem J 136: 147–155.

    PubMed  CAS  Google Scholar 

  • Altstiel L, Branton D (1983) Fusion of coated vesicles with lysosomes: measurement with a fluorescence assay. Cell 32: 921–929.

    Article  PubMed  CAS  Google Scholar 

  • Baker PF, Knight DE (1984) Calcium control of exocytosis in bovine adrenal medullary cells. Trends Neurol Sci 7: 120–127.

    Article  CAS  Google Scholar 

  • Batenburg AM, Rochat H, Verkleij AJ, de Kruijff B (1985) The penetration of a cardiotoxin into cardiolipin model membranes and its applications on lipid organization. Biochemistry 24: 7102–7110.

    Article  Google Scholar 

  • Bearer EL, Düzgünez N, Friend DS, Papahadjopoulos D (1982) Fusion of phospolipid vesicles arrested by quick freezing. The question of lipidic particles as intermediates in membrane fusion. Biochim Biophys Acta 693: 93–102.

    Article  PubMed  CAS  Google Scholar 

  • Chandler DE, Hauser JE (1980) Arrest of membrane fusion events in mast cells by quick freezing. J Cell Biol 86: 666–674.

    Article  PubMed  CAS  Google Scholar 

  • Cullis PR, Hope MJ (1978) Effects of fusogenic agents on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature (Lond) 271: 672–674.

    Article  CAS  Google Scholar 

  • Cullis PR, de Kruijff B (1979) Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta 559: 399–420.

    Article  PubMed  CAS  Google Scholar 

  • Cullis PR, de Kruijff B, Hope MJ, Verkleij AJ, Nayar R, Farren SB, Tilcock C, Madden TD, Bally MB (1982) Structural properties of lipids and their functional roles on biological membranes. In: Aloia RC (ed): Membrane Fluidity Vol 2, Academic Press, New York, pp 40–79.

    Google Scholar 

  • Das S, Rand RP (1984) Diacylglycerol causes major structural transitions in phospholipid bilayer membranes. Biochem Biophys Res Commun 124: 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Deamer DW, Leonard R, Tardieu A, Branton D (1970) Lamellar and hexagonal lipid phases visualized by freeze etching. Biochim Biophys Acta 219: 47–60.

    Article  PubMed  CAS  Google Scholar 

  • Gulik-Krzywicki T, Balerna M, Vincent JP, Luzdanski M (1981) Freeze-fracture study of cardiotoxin action on axonal membrane and axonal membrane lipid vesicles. Biochim Biophys Acta 643: 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Hui SW, Steward TP (1981) ‘Lipidic particles’ are intermembrane attachment sites. Nature (Lond) 290: 427–428.

    Article  CAS  Google Scholar 

  • Lau ALY, Chan SJ (1975) Alamethecin-mediated fusion of lecithin vesicles. Proc Natl Acad Sci USA 72: 2170–2174.

    Article  PubMed  CAS  Google Scholar 

  • Lucy JA (1970) The fusion of biological membranes. Nature (Lond) 227: 814–817.

    Article  Google Scholar 

  • Lucy JA (1984) Do hydrophobic sequences cleaved from cellular polypeptides induce membrane fusion reactions in vivo? FEBS Lett 166: 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Luzzati V, Gulik-Krzywicki T, Tardieu A (1968) Polymorphism of lecithins. Nature (Lond) 218: 1031–1034.

    Article  CAS  Google Scholar 

  • Miller RG (1980) Do ‘lipidic particles’ represent intermembrane attachment sites? Nature (Lond) 287: 166–167.

    Article  CAS  Google Scholar 

  • Op den Kamp JAF (1979) Lipid asymmetry in membranes. Ann Rev Biochem 48: 47–71.

    Article  Google Scholar 

  • Papahadjopoulos D, Portis A, Pangborn W (1978) Calcium-induced lipid phase transitions and membrane fusion. Ann NY Acad Sci 308: 50–66.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Patzak A, Lingg G, Winkler H, Plattner H (1983) Membrane events in adrenal chromaffin cells during exocytosis: a freeze-etching analysis after rapid cryofixation. Eur J Cell Biol 32: 31–37.

    PubMed  CAS  Google Scholar 

  • Schramm M. Oates J, Papahadjopoulos D, Loyter A (1982) Fusion and implantation in biological membranes. Trends Pharmacol Sci 3: 221–229.

    Article  Google Scholar 

  • Taraschi TF, van der Steen ATM, de Kruijff B, Tellier C, Verkleij AJ (1982) Lectin-receptor interactions in liposomes: evidence that binding of wheat-germ agglutinin to glycoprotein phosphatidylethanolamine vesicles induces non-bilayer structures. Biochemistry 21: 5756–5764.

    Article  PubMed  CAS  Google Scholar 

  • Van Dijck, PWM, de Kruijff B, Aarts PAMM, Verkleij AJ, de Gier J (1978) Phase transitions in phospholipid model membranes of different curvature. Biochim Biophys Acta 506: 183–191.

    Article  PubMed  Google Scholar 

  • Van Venetië R, Hage WJ, Bleumink JG, Verkleij AJ (1981) Propane jet-freezing: a valid ultra-rapid freezing method for preservation of temperature-dependent lipid phases. J Microsc 123: 287–292.

    Article  PubMed  Google Scholar 

  • Verkleij AJ (1984) Lipidic intramembraneous particles. Biochim Biophys Acta 779: 43–63.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij AJ, Mombers C, Gerritsen WJ, Leunissen-Bijvelt J, Cullis PR (1979a) Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing. Biochim Biophys Acta 555: 358–361.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij AJ, Monbers C, Leunissen-Bijvelt J, Ververgaert PHJ (1979b) Lipidic intramembraneous particles. Nature (Lond) 279: 162–163.

    Article  CAS  Google Scholar 

  • Verkleij AJ, Leunissen-Bijvelt J, de Kruijff B, Hope M, Cullis PR (1984) Non-bilayer structures in membrane fusion. In: Cell Fusion, Ciba Foundation Symposium 103, Pitman London, pp 45–59.

    Google Scholar 

  • Wakelam MJO (1983) Inositol phospholipid metabolism and myoblast fusion. Biochem J 214: 77–82.

    PubMed  CAS  Google Scholar 

  • Wilschut J, Holsappel M, Jansen R (1982) Ca2+-induced fusion of cardiolipin/phosphatidyl-choline vesicles monitored by mixing of aqueous contents. Biochim Biophys Acta 690: 297–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verkleij, A.J. (1986). Role of Lipids During Fusion of Model and Biological Membranes. In: Horrocks, L.A., Freysz, L., Toffano, G. (eds) Phospholipid Research and the Nervous System. FIDIA Research Series, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-0490-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0490-4_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-0492-8

  • Online ISBN: 978-1-4899-0490-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics