Advertisement

The Control and Function of Inositide-Metabolizing Enzymes

  • R. F. Irvine
  • A. J. Letcher
  • D. J. Lander
  • R. M. C. Dawson
Conference paper
Part of the FIDIA Research Series book series (FIDIA, volume 4)

Abstract

Recent advances in our understanding of the role of inositides in intracellular signalling (Michell et al., 1981; Berridge, 1984a; Berridge and Irvine, 1984) have highlighted the need to understand the mechanisms by which the cellular levels of inositides, and hence indirectly of the second messengers generated from them, are controlled. A stimulation of PtdInsP 2 phosphodiesterase is the likely initial event occurring after cell activation by a large number of agonists (Fig. 1). As a result of phosphodiesteratic cleavage of PtdInsP 2 the two second messengers, diacylglycerol (Nishizuka, 1984) and InsP 3 (Berridge, 1984a; Berridge and Irvine, 1984), are formed. The former activates protein kinase C (Nishizuka, 1984) and the latter primarily mobilizes intracellular calcium (Berridge and Irvine, 1984), and these two pathways frequently, but not always (Labarca et al., 1984; Danthurluri and Deth, 1984), act synergistically to produce a final cell activation (Kaibuchi et al., 1984; Rink et al., 1983; Putney et al., 1984). Although the acute control of the levels of these intracellular messengers lies in the regulation of PtdInsP 2 phosphodiesterase activity, the regulation of diacylglycerol and InsP 3 over the longer term (after the first few seconds of stimulation) lies in the hands of the enzymes which generate PtdInsP 2, and those which degrade diacylglycerol and InsP 3. It is the possible mechanism for regulation of these enzymes which are discussed here.

Keywords

Diacylglycerol Lipase Phosphatidate Phosphohydrolase Acute Control PtdIns Kinase Diacylglycerol Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloyo VJ, Zwiers H and Gispen WH (1983) J Neurochem 41: 649–653.PubMedCrossRefGoogle Scholar
  2. Berridge MJ (1981) Mol Cell Endocrinol 24: 115–140.PubMedCrossRefGoogle Scholar
  3. Berridge MJ (1983) Biochem J 212: 849–858.PubMedGoogle Scholar
  4. Berridge MJ (1984a) Biochem J 220: 345–360.PubMedGoogle Scholar
  5. Berridge MJ (1984b) Biotechnology 2: 541–546.CrossRefGoogle Scholar
  6. Berridge MJ and Irvine RF (1984) Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  7. Best L and Malaisse WJ (1984) Arch Biochem Biophys 234: 253–257.PubMedCrossRefGoogle Scholar
  8. Butterworth SC, Martin A and Brindley BN (1984) Biochem J 222: 487–493.Google Scholar
  9. Chapman BA, Wilson JS, Colley PW, Picola RC and Somes JB (1983) Biochem Biophys Res Commun 115: 771–776.PubMedCrossRefGoogle Scholar
  10. Collins CA and Wells WW (1983) J Biol Chem 258: 2130–2134.PubMedGoogle Scholar
  11. Daleo GR, Piras MM and Piras MR (1970) Eur J Biochem 68: 339–346.CrossRefGoogle Scholar
  12. Danthurluri NR and Deth RC (1984) Biochem Biophys Res Commun 125: 1103–1109.CrossRefGoogle Scholar
  13. Dawson RMC and Thompson W (1964) Biochem J 91: 244–250.PubMedGoogle Scholar
  14. De Chaffoy de Courcelles D, Roevens P and Van Belle H (1984) FEBS Lett 173: 389–393.PubMedCrossRefGoogle Scholar
  15. Downes CP, Mussat MC and Michell RH (1982) Biochem J 203: 169–177.PubMedGoogle Scholar
  16. Drummond AH and Raeburn CA (1984) Biochem J 224: 129–136.PubMedGoogle Scholar
  17. Enyedi A, Fargo A, Sarkdi B and Gardos G (1984) FEBS Lett 176: 235–238.PubMedCrossRefGoogle Scholar
  18. Farese RV, Barnes DE, Davis JS, Standaert ML and Pollet RJ (1984) J Biol Chem 259: 7094–7100.PubMedGoogle Scholar
  19. Halenda SP and Feinstein MB (1984) Biochem Biophys Res Commun 124: 507–513.PubMedCrossRefGoogle Scholar
  20. Haslam RJ and Davidson MML (1984a) FEBS Lett 174: 90–95.PubMedCrossRefGoogle Scholar
  21. Haslam RJ and Davidson MML (1984b) J Receptor Res 4: 605–629.Google Scholar
  22. Hawthorne JN (1983) Bioscience Rep 3: 887–904.CrossRefGoogle Scholar
  23. Hirasawa K, Irvine RF and Dawson RMC (1982) Biochem J 205: 437–442.PubMedGoogle Scholar
  24. Irvine RF (1982a) Cell Calcium 3: 295–309.PubMedCrossRefGoogle Scholar
  25. Irvine RF (1982b) Biochem J 204: 3–16.PubMedGoogle Scholar
  26. Irvine RF and Dawson RMC (1980) Biochem Soc Trans 8: 376–377.PubMedGoogle Scholar
  27. Irvine RF, Letcher AJ, Lander DJ and Dawson RMC (1985) in: Bleasdale JE, Eichberg J and Hauser G (eds): Inositol and Inositides, Humana Press, Clifton, NY USA, pp. 123–135.CrossRefGoogle Scholar
  28. Irvine RF, Letcher AJ and Dawson RMC (1984b) Biochem J 218: 177–185.PubMedGoogle Scholar
  29. Irvine RF, Letcher AJ, Lander DJ and Downes CP (1984c) Biochem J 223: 237–243.PubMedGoogle Scholar
  30. Irvine RF, Ånggård EE, Letcher AJ and Downes CP (1985) Biochem J 229: 505–511PubMedGoogle Scholar
  31. Jergil B and Sundler R (1983) J Biol Chem 258: 7968–7973.PubMedGoogle Scholar
  32. Kaibuchi K, Takai Y, Sawamura M, Hoshijima M, Fujikara M and Nishizuka Y (1983) J Biol Chem 258: 6701–6704.PubMedGoogle Scholar
  33. Kanoh H and Åkesson B (1978) Eur J Biochem 85: 225–232.PubMedCrossRefGoogle Scholar
  34. Labarca R, Janowsky A, Patel J and Paul SM (1984) Biochem Biophys Res Commun 123: 703–709.PubMedCrossRefGoogle Scholar
  35. Low MG and Weglicki W (1983) Biochem J 215: 325–334.PubMedGoogle Scholar
  36. Low MG, Carrol RC and Weglicki WB (1984) Biochem J 221: 813–820.PubMedGoogle Scholar
  37. Mack SE and Palmer FBStC (1984) J Lipid Res 25: 75–85.PubMedGoogle Scholar
  38. Mauco G, Dangelmaier C and Smith JB (1984) Biochem J 224: 933–940.PubMedGoogle Scholar
  39. Michell RH, Harwood JL, Coleman R and Hawthorne JN (1967) Biochim Biophys Acta 144: 649–658.PubMedCrossRefGoogle Scholar
  40. Michell RH, Kirk CJ, Jones LM, Downes CP and Creba JA (1981) Phil Trans R Soc B 296: 123–137.PubMedCrossRefGoogle Scholar
  41. Nishizuka Y (1984) Nature 308: 693–698.PubMedCrossRefGoogle Scholar
  42. Putney JW, McKinney JS, Aub DL and Leslie BA (1984) Molec Pharmacol 26: 261–266.Google Scholar
  43. Quist EE (1985) Arch Biochem Biophys 236: 140–149.PubMedCrossRefGoogle Scholar
  44. Rink TJ, Sanchez A and Hallam TJ (1983) Nature 305: 317–319.PubMedCrossRefGoogle Scholar
  45. Seyfred MA, Farrell LE and Wells WW (1984) J Biol Chem 259: 13204–13208.PubMedGoogle Scholar
  46. Smith CD and Wells WW (1983) J Biol Chem 258: 9368–9373.PubMedGoogle Scholar
  47. Smith CD and Wells WW (1984) Arch Biochem Biophys 235: 529–537.PubMedCrossRefGoogle Scholar
  48. Storey DJ, Shears SB, Kirk CJ and Michell RH (1984) Nature 312: 374–376.PubMedCrossRefGoogle Scholar
  49. Taylor MV, Metcalfe JC, Hesketh TR, Smith GA and Moore SP (1984) Nature 312: 462–465.PubMedCrossRefGoogle Scholar
  50. Torda C (1972) Biochim Biophys Acta 286: 389–395.PubMedCrossRefGoogle Scholar
  51. Varsanyi M, Tolle H, Heilmeyer MG, Dawson RMC and Irvine RF (1983) EMBO J 2: 1543–1548.PubMedGoogle Scholar
  52. Whitman MR, Epstein J and Cantley L (1984) J Biol Chem 259: 13652–13655.PubMedGoogle Scholar
  53. Whittaker M and Irvine RF (1984) Nature 312: 636–639.CrossRefGoogle Scholar
  54. Wilson DB, Bross TE, Hofmann SL and Majerus PW (1984) J Biol Chem 259: 11718–11724.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • R. F. Irvine
    • 1
  • A. J. Letcher
    • 1
  • D. J. Lander
    • 1
  • R. M. C. Dawson
    • 1
  1. 1.Department of BiochemistryAFRC Institute of Animal PhysiologyBabraham, CambridgeUK

Personalised recommendations