Advertisement

Health Effects

  • Fred T. Cross
Part of the Environmental Science Research book series (ESRH, volume 35)

Abstract

The radon-related radiation dose to respiratory tissue and any resulting biological effects come from the inhalation of existing radon progeny in the air rather than from inhaled radon and its subsequent decay products. Once inhaled, radon gas quickly finds its way to the bloodstream. It is a chemically inert gas, and only a small fraction of that inhaled will be absorbed by the blood and not exhaled. Further, because the half-life of radon is relatively long compared to breathing time, only a small amount of it will decay while in the lung. The relatively short half-lives of the immediate radon progeny (excluding 210Pb and its subsequent decay products) preclude any appreciable radiation dose to nonrespiratory tissue or even to pulmonary lymph nodes. In addition, the longer-lived progeny will not grow in fast enough, or they will be substantially cleared before an appreciable radiation dose accrues to any tissue of the body. This is particularly true at environmental radon-exposure levels and is supported in both human and animal studies.

Keywords

Lung Cancer Lung Cancer Risk Uranium Miner Exposure Rate Radon Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Commission on Radiological Protection (ICRP), Biological Effects of Inhaled Radionuclides, ICRP Publication 31, Pergamon Press, New York (1980).Google Scholar
  2. 2.
    R. W. Hornung and T. J. Meinhardt, Quantitative Risk Assessment of Lung Cancer in U.S. Uranium Miners, National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH (1986).Google Scholar
  3. 3.
    H. G. Muller, Radiation damage to the genetic material, Sei. Prog. 7, 93–493 (1951).Google Scholar
  4. 4.
    C. O. Nordling, A new theory of the cancer inducing mechanism, Br. J. Cancer 7, 68–72 (1953).PubMedGoogle Scholar
  5. 5.
    P. Armitage and R. Doll, in: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 4, pp. 19–38, University of California Press, Berkeley and Los Angeles (1961).Google Scholar
  6. 6.
    S. H. Moolgavkar and A. G. Knudson, Jr., Mutation and cancer: A model for human carcinogenesis, J. Natl. Cancer Inst. 66, 1037–1052 (1981).PubMedGoogle Scholar
  7. 7.
    A. G. Knudson, Jr., Hereditary cancer, oncogenes, and antioncogenes, Cancer Res. 45, 1437–1443 (1985).PubMedGoogle Scholar
  8. 8.
    V. R. Potter, A new protocol and its rationale for the study of initiation and promotion of carcinogenesis, Carcinogenesis 2, 1375–1379 (1981).PubMedGoogle Scholar
  9. 9.
    H. R. Hennings, R. Shores, M. L. Wenk, E. F. Spangler, R. Tarone, and S. H. Yuspa, Malignant conversion of mouse skin tumors is increased by tumor initiators and unaffected by tumor promoters, Nature 304, 67–69 (1983).PubMedGoogle Scholar
  10. 10.
    K. G. Vohra, K. C. Pillai, U. C. Mishra, and S. Sadasivan, in: Natural Radiation Environment—Proceedings of the Second Special Symposium on Natural Radiation Environment (K. G. Vohra, K. C. Pillai, U. C. Mishra, and S. Sadasivan, eds.), John Wiley and Sons, New York (1982).Google Scholar
  11. 11.
    W. Hofmann, R. Katz, and Z. Chunxiang, Lung cancer risk at low doses of a particles, Health Phys. 51, 457–468 (1986).PubMedGoogle Scholar
  12. 12.
    E. G. Letourneau and D. T. Wigle, in: Proceedings of the Specialist Meeting on Assessment of Radon and Daughter Exposure and Related Biological Effects (G. F. Clémente, A. V. Nero, F. Steinhausler, and M. E. Wrenn, eds.), pp. 239–251, R. D. Press, Salt Lake City, UT (1982).Google Scholar
  13. 13.
    I. Uzunov, F. Steinhausler, and E. Pohl, Carcinogenic risk of exposure to radon daughters associated with radon spas, Health Phys. 41, 807–813 (1981).PubMedGoogle Scholar
  14. 14.
    W. Chruschielewski, T. Domanski, and W. Orzechowski, Concentrations of radon and its progeny in the rooms of Polish spas, Health Phys. 45, 421–424 (1983).Google Scholar
  15. 15.
    G. Agricola, De Re Metallica Basil (1597). [Translated by H. C. Hoover and L. H. Hoover, Dover Publications, New York (1950).]Google Scholar
  16. 16.
    H. Q. Woodard, Radiation Carcinogenesis in Man: A Critical Review, U.S. DOE Report EML-380, National Technical Information Service, Springfield, VA (1980).Google Scholar
  17. 17.
    J. G. Batsakis, Tumors of the Head and Neck, p. 124, Williams and Wilkins, Baltimore, MD (1976).Google Scholar
  18. 18.
    E. McDowell, J. S. McLaughlin, D. K. Merenyl, R. F. Kiefer, C. C. Harris, and B. F. Trump, The respiratory epithelium histogenesis of lung carcinoma in the human, J. Natl. Cancer Inst. 2, 587–606 (1978).Google Scholar
  19. 19.
    M. J. Evans, in: Proceedings of the 37th Annual Meeting of the American College of Veterinary Pathologists and the 21st Annual Meeting of the American Society for Veterinary Clinical Pathology/Toxicologic Pathology, pp. 193–202, American College of Veterinary Pathologists, Kennett Square, PA (1986).Google Scholar
  20. 20.
    G. Saccomanno, V. E. Archer, O. Auerbach, M. Kuschner, M. Egger, S. Wood, and R. Mick, in: Proceedings of the International Conference on Radiation Hazards in Mining: Control, Measurement and Medical Aspects (M. Gomez, ed.), pp. 675–679, Kingsport Press, Inc., Kingsport, TN (1981).Google Scholar
  21. 21.
    G. Saccomanno, V. E. Archer, R. P. Saunders, L. A. James, and P. A. Beckler, Lung cancer of uranium miners on the Colorado Plateau, Health Phys. 10, 1195–1201 (1964).PubMedGoogle Scholar
  22. 22.
    G. Saccomanno, V. E. Archer, O. Auerbach, M. Kuschner, R. P. Saunders, and M. G. Klein, Histologic types of lung cancer among uranium miners, Cancer 27, 515–523 (1971).PubMedGoogle Scholar
  23. 23.
    J. Horacek, V. Placek, and J. Sevc, Histologie types of bronchogenic cancer in relation to different conditions of radiation exposure, Cancer 40, 832–835 (1977).PubMedGoogle Scholar
  24. 24.
    V. E. Archer, E. P. Radford, and O. Axelson, in: Conference/Workshop on Lung Cancer Epidemiology and Industrial Applications of Sputum Cytology, pp. 324–367, Colorado School of Mines Press, Golden, CO (1979).Google Scholar
  25. 25.
    National Institute for Occupational Safety and Health/National Institute of Environmental Health Sciences, Radon Daughter Exposure and Respiratory Cancer—Quantitative and Temporal Aspects, Joint Monograph No. 1, National Technical Information Service, Springfield, VA (1971).Google Scholar
  26. 26.
    National Academy of Sciences, The Effects on Populations of Exposure to Low Levels of Ionizing Radiation (BEIR-III Report), National Academy Press, Washington, DC (1980).Google Scholar
  27. 27.
    United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation, United Nations, New York (1977).Google Scholar
  28. 28.
    R. D. Evans, J. H. Harley, W. Jacobi, A. S. McLean, W. A. Mills, and C. G. Stewart, Estimate of risk from environmental exposure to radon-222 and its decay products, Nature 290, 98–100 (1981).PubMedGoogle Scholar
  29. 29.
    National Council on Radiation Protection and Measurements (NCRP), Evaluation of Occupational and Environmental Exposures to Radon and Radon Daughters in the United States, NCRP Report No. 78, National Council on Radiation Protection and Measurements, Bethesda, MD (1984).Google Scholar
  30. 30.
    J. Muller, W. C. Wheeler, J. F. Gentleman, G. Suramji, and R. A. Kusiak, Study of Mortality of Ontario Mines 1955–1977, Part I, Ontario Ministry of Labour, Toronto (1983).Google Scholar
  31. 31.
    J. Muller, W. C. Wheeler, J. F. Gentleman G. Suramji, and R. A. Kusiak, in: Occupational Radiation Safety in Mining (H. Stocker, ed.), Vol. I, pp. 335–343, Canadian Nuclear Association, Toronto (1985).Google Scholar
  32. 32.
    International Commission on Radiological Protection (ICRP), Exposure and Lung Cancer Risk of the General Public from Inhaled Radon Daughters, Report of a Task Group of the ICRP (Draft February 1985; in press).Google Scholar
  33. 33.
    N. Harley, J. M. Samet, F. T. Cross, T. Hess, J. Muller, and D. Thomas, Contribution of radon and radon daughters to respiratory cancer, Environ. Health Perspect. 70, 17–21 (1986).PubMedGoogle Scholar
  34. 34.
    D. C. Thomas and K. G. McNeill, Risk Estimates for the Health Effects of Alpha Radiation, Research Report, INFO-0081, Atomic Energy Control Board of Canada, Ottawa (1982).Google Scholar
  35. 35.
    A. S. Whittemore and A. McMillan, Lung cancer mortality among U.S. uranium miners: A reappraisal, J. Nail. Cancer. Inst. 71, 489–499 (1983).Google Scholar
  36. 36.
    International Commission on Radiological Protection (ICRP), Limits for Inhalation of Radon Daughters by Workers, ICRP Publication 32, Pergamon Press, New York (1981).Google Scholar
  37. 37.
    Environmental Protection Agency (EPA), Final Environmental Impact Statement of Standards for Control of Byproduct Materials from Uranium Ore Processing (40CFR192), Vol. I, EPA 520/1-83-008-20, Washington, DC (1983).Google Scholar
  38. 38.
    A. F. Cohen and B. L. Cohen, Tests of the linearity assumption in the dose-effect relationship for radiation-induced cancer, Health Phys. 38, 53–69 (1980).PubMedGoogle Scholar
  39. 39.
    United States Department of Health and Human Services (USDHHS), The Health Consequences of Smoking—Cancer: A Report of the Surgeon General, DHHS Publication No. (PHS)82-50179 (1982).Google Scholar
  40. 40.
    World Health Organization (WHO), Smoking and Its Effects on Health, WHO Technical Report Series No. 568, WHO, Geneva (1975).Google Scholar
  41. 41.
    World Health Organization (WHO), Controlling the Smoking Epidemic, WHO Technical Report Series No. 636, WHO, Geneva (1979).Google Scholar
  42. 42.
    F. E. Lundin, J. W. Loyd, E. M. Smith, V. E. Archer, and D. A. Holaday, Mortality of uranium miners in relation to radiation exposure, hard-rock mining and cigarette smoking—1950 through September 1967, Health Phys. 16, 571–578 (1969).PubMedGoogle Scholar
  43. 43.
    E. P. Radford, in: Quantification of Occupational Cancer (R. Peto and M. Schneiderman, eds.), Banbury Report 9, pp. 151–163, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1981).Google Scholar
  44. 44.
    E. P. Radford and K. G. St. Clair Renard, Lung cancer in Swedish iron miners exposed to low doses of radon daughters, N. Engl. J. Med. 310, 1485–1494 (1984).PubMedGoogle Scholar
  45. 45.
    O. Axelson and L. Sundell, Mining, lung cancer and smoking, Scand. J. Work Environ. Health 4, 46–52 (1978).PubMedGoogle Scholar
  46. 46.
    Federal Radiation Council, Guidance for the Control of Radiation Hazards in Uranium Mining, Staff Report No. 8 (Revised), U.S. Government Printing Office, Washington, DC (1967).Google Scholar
  47. 47.
    V. E. Archer, in: Carcinogenesis: A Comprehensive Survey (M. J. Mass et al., eds.), Vol. 8, pp. 23–37, Raven Press, New York (1985).Google Scholar
  48. 48.
    A. E. Reif, Synergism in carcinogenesis, J. Natl. Cancer Inst. 73, 25–39 (1984).PubMedGoogle Scholar
  49. 49.
    J. W. Horm, and A. J. Asire, Changes in lung cancer incidence mortality rates among Americans, J. Natl. Cancer Inst. 69, 833 (1982).PubMedGoogle Scholar
  50. 50.
    D. L. Preston, H. Kato, K. J. Kopecky, and S. Frujita, Lifespan Study Report 10, Part 1, Cancer Mortality among A-Bomb Survivors in Hiroshima and Nagasaki, 1950–82, RERF Technical Report 1-86, Radiation Effects Research Foundation, Hiroshima, Japan (1986).Google Scholar
  51. 51.
    Nuclear Energy Agency (NEA), Dosimetry Aspects of Exposure to Radon and Thoron Daughter Products, NEA (OECD) Report, Paris (1983).Google Scholar
  52. 52.
    R. O. McClellan, B. B. Boecker, R. G. Cuddihy, W. C. Griffith, F. F. Hahn, A. Muggenburg, B. R. Scott, and F. A. Seiler, in: Proceedings of the Symposium on the Control of Exposure of the Public to Ionizing Radiation, April 27–29, 1981, Reston, VA, pp. 28–39, National Council on Radiation Protection and Measurements, Bethesda, MD (1982).Google Scholar
  53. 53.
    R. C. Nair, J. D. Abbatt, G. R. Howe, H. B. Newcombe, and S. E. Frost, in: Occupational Radiation Safety in Mining (H. Stocker, ed.), Vol. 1, pp. 354–364, Canadian Nuclear Association, Toronto (1985).Google Scholar
  54. 54.
    American Cancer Society (ACS), 1986 Facts and Figures, ACS, New York (1986).Google Scholar
  55. 55.
    A. S. Whittemore, The age distribution of human cancer for carcinogenic exposures of varying intensity, Am. J. Epidemiol. 106, 418–432 (1977).PubMedGoogle Scholar
  56. 56.
    N. E. Day and C. C. Brown, Multistage models and primary prevention of cancer, J. Natl. Cancer Inst. 64, 977–989 (1980).PubMedGoogle Scholar
  57. 57.
    N. H. Harley and B. S. Pasternack, A model for predicting lung cancer risks induced by environmental levels of radon daughters, Health Phys. 40, 307–316 (1981).PubMedGoogle Scholar
  58. 58.
    J. Lafuma, M. Marin, J. Beaumatin, and R. Masse, in: Proceedings of the Third International Symposium on Radiological Protection—Advances in Theory and Practice, pp. 82–86, ICRP, Pergamon Press, Oxford (1982).Google Scholar
  59. 59.
    H. Jansen and P. Schultzer, Experimental investigations into the internal radium emanation therapy. I. Emanatorium experiments with rats, Acta Radiol. 6, 631 (1926).Google Scholar
  60. 60.
    J. Read and J. C. Mottram, The ‘tolerance concentration’ of radon in the atmosphere, Br.J. Radiol. 12, 54 (1939).Google Scholar
  61. 61.
    M. L. Jackson, The Biological Effects of Inhaled Radon, Master’s thesis, Massachusetts Institute of Technology, Cambridge (1940).Google Scholar
  62. 62.
    C. R. Richmond and B. B. Boecker, Experimental Studies, Final Report of Subgroup I.B, Interagency Uranium Mining Radiation Review Group, Environmental Protection Agency, Rockville, MD (1971).Google Scholar
  63. 63.
    Senes Consultants, Ltd., Assessment of the Scientific Basis for Existing Federal Limitations on Radiation Exposure to Underground Uranium Miners, Report prepared for the American Mining Congress, Senes Consultants, Ltd., Willowdale, Ontario (1984).Google Scholar
  64. 64.
    F. T. Cross, A Review of Radon Inhalation Studies in Animals with Reference to Epidemiological Data, Research Report for Senes Consultants, Ltd., Ontario, Canada, Battelle, Pacific Northwest Laboratories, Richland, WA (1984).Google Scholar
  65. 65.
    W. F. Bale, Hazards associated with radon and thoron, Memo dated March 14, 1951, Division of Biology and Medicine, Atomic Energy Commission, Washington, DC. [Also found in Health Phys. 38, 1061–1066 (1951).]Google Scholar
  66. 66.
    S. J. Harris, Radon levels in mines in New York State, Arch. Ind. Hyg. Occup. Med. 10, 54–60 (1954).Google Scholar
  67. 67.
    D. A. Morken, Acute toxicity of radon, AMA Arch. Ind. Health 12, 435 (1955).PubMedGoogle Scholar
  68. 68.
    J. Shapiro, An Evaluation of the Pulmonary Radiation Dosage from Radon and Its Daughter Products, Project Report UR-298 to the U.S. Atomic Energy Commission, University of Rochester, Rochester, NY (1954).Google Scholar
  69. 69.
    S. H. Cohn, R. K. Skow, and J. K. Gong, Radon inhalation studies in rats, Arch. Ind. Hyg. Occup. Med. 7, 508–515 (1953).Google Scholar
  70. 70.
    D. A. Morken, in: Noble Gases (R. E. Stanley and A. A. Moghissi, eds.), pp. 469–471, CONF-730915, National Technical Information Service, Springfield, VA (1973a).Google Scholar
  71. 71.
    D. A. Morken, in: Noble Gases (R. E. Stanley and A. A. Moghissi, eds.), pp. 501–506, CONF-730915, National Technical Information Service, Springfield, VA (1973b).Google Scholar
  72. 72.
    D. A. Morken and J. K. Scott, Effects on Mice of Continual Exposure to Radon and Its Decay Products on Dust, Project Report UR-669 to the U.S. Atomic Energy Commission, University of Rochester, Rochester, NY, National Technical Information Service, Springfield, VA (1966).Google Scholar
  73. 73.
    R. F. Palmer, P. O. Jackson, J. C. Gaven, and B. O. Stuart, Dosimetric studies of inhaled radon daughters in dogs, in: Pacific Northwest Laboratory Annual Report for 1975 to the ERDA Division of Biomedical and Environmental Research, BNWL-2000, Part 1, pp. 53–54, National Technical Information Service, Springfield, VA (1976).Google Scholar
  74. 74.
    A. E. Desrosiers, A. Kennedy, and J. B. Little, 222Rn daughter dosimetry in the Syrian Golden hamster lung, Health Phys. 35, 607–623 (1978).PubMedGoogle Scholar
  75. 75.
    N. H. Harley and B. S. Pasternack, Alpha absorption measurements applied to lung dose from radon daughters, Health Phys. 23, 771–782 (1972).PubMedGoogle Scholar
  76. 76.
    N. H. Harley and B. S. Pasternack, Environmental radon daughter alpha dose factors in a five-lobed human lung, Health Phys. 42, 789–799 (1982).PubMedGoogle Scholar
  77. 77.
    W. Hofmann, Cellular lung dosimetry for inhaled radon decay products as a base for radiation induced lung cancer risk assessment. I. Calculation of mean cellular doses; Radiat. Environ. Biophys. 20, 95–112 (1982).PubMedGoogle Scholar
  78. 78.
    W. Jacobi and K. Eisfeld, Dose to Tissues and Effective Dose Equivalent by Inhalation of Radon-222, Radon-220 and Their Short-Lived Daughters, Gesellschaft für Strahlen-und Umweltforschung MBH, Report GSF S-626, Institut für Strahlenschutz, München-Nürnberg (1980).Google Scholar
  79. 79.
    A. C. James, W. Jacobi, and F. Steinhausler, F., in: Proceedings of the International Conference on Radiation Hazards in Mining: Control, Measurement and Medical Aspects (M. Gomez, ed.), 42–54, Kingsport Press, Inc., Kings-port, TN (1981).Google Scholar
  80. 80.
    J. Chameaud, R. Perraud, J. Lafuma, R. Masse, and J. Pradel, in: Experimental Lung Cancer. Carcinogenesis and Bioassays (E. Karbe and J. F. Park, eds.), pp. 411–421, Springer-Verlag, New York (1974).Google Scholar
  81. 81.
    J. Chameaud, R. Perraud, J. Chretien, R. Masse, and J. Lafuma, in: Pulmonary Toxicology of Respirable Particles (C. L. Sanders, F. T. Cross, G. E. Dagle, and J. A. Mahaffey, eds.), pp. 551–557, CONF-791002, National Technical Information Service, Springfield, VA (1980).Google Scholar
  82. 82.
    J. Chameaud, R. Perraud, R. Masse, J. C. Nenot, and J. Lafuma, in: Biological and Environmental Effects of Low Level Radiation, Vol. II, pp. 223–228, IAEA STI/PUB/409, International Atomic Energy Agency, Vienna (1976).Google Scholar
  83. 83.
    J. Chameaud, R. Perraud, J. Chretien, R. Masse, and J. Lafuma, in: Late Biological Effects of Ionizing Radiation, Vol. II, pp. 429–436, IAEA SIT/PUB/489, International Atomic Energy Agency, Vienna (1978).Google Scholar
  84. 84.
    J. Chameaud, R. Perraud, R. Masse, and J. Lafuma, in: Proceedings of the International Conference on Radiation Hazards in Mining: Control, Measurement and Medical Aspects (M. Gomez, ed.), pp. 222–235, Kingsport Press, Inc., Kingsport, TN (1981).Google Scholar
  85. 85.
    J. Chameaud, R. Perraud, J. Lafuma, and R. Masse, in: Proceedings of the Specialist Meeting on Assessment of Radon and Daughter Exposure and Related Biological Effects (G. F. Clemente, A. V. Nero, F. Steinhausler, and M. E. Wrenn, eds.), pp. 198–209, R. D. Press, Salt Lake City, UT (1982).Google Scholar
  86. 86.
    J. Chameaud, R. Masse, and J. Lafuma, Influence of radon daughter exposure at low doses on occurrence of lung cancer in rats, Radiat. Prot. Dosim. 7, 385–388 (1984).Google Scholar
  87. 87.
    J. Chameaud, R. Masse, M. Morin, and J. Lafuma, in: Proceedings of the International Conference on Occupational Radiation Safety in Mining (H. Stocker, ed.), pp. 350–353, Canadian Nuclear Association, Toronto (1984).Google Scholar
  88. 88.
    F. T. Cross, R. F. Palmer, R. E. Filipy, R. H. Busch, and B. O. Stuart, Study of the Combined Effects of Smoking and Inhalation of Uranium Ore Dust, Radon Daughters and Diesel Oil Exhaust Fumes in Hamsters and Dogs, PNL-2744, Pacific Northwest Laboratory, Richland, WA, National Technical Information Service, Springfield, VA (1978).Google Scholar
  89. 89.
    F. T. Cross, R. F. Palmer, R. H. Busch, R. E. Filipy, and B. O. Stuart, Development of lesions in Syrian Golden hamsters following exposure to radon daughters and uranium ore dust, Health Phys. 41, 135–153 (1981).PubMedGoogle Scholar
  90. 90.
    F. T. Cross, R. F. Palmer, R. E. Filipy, G. E. Dagle, and B. O. Stuart, Carcinogenic effects of radon daughters, uranium ore dust and cigarette smoke in beagle dogs, Health Phys. 42, 33–52 (1982).PubMedGoogle Scholar
  91. 91.
    F. T. Cross, R. F. Palmer, R. H. Busch, and R. L. Buschbom, in: Proceedings of the Specialist Meeting on Assessment of Radon and Daughter Exposure and Related Biological Effects (G. F. Clemente, A. V. Nero, F. Steinhausler, and M. E. Wrenn, eds.), pp. 189–197, R. D. Press, Salt Lake City, UT (1982).Google Scholar
  92. 92.
    F. T. Cross, R. L. Buschbom, G. E. Dagle, R. E. Filipy, P. O. Jackson, S. M. Loscutoff, and R. F. Palmer, Inhalation hazards to uranium miners, in: Pacific Northwest Laboratory Annual Report for 1982 to the DOE Office of Energy Research, PNL-4600, Part 1, pp. 77–80, National Technical Information Service, Springfield, VA (1983).Google Scholar
  93. 93.
    F. T. Cross, R. L. Buschbom, G. E. Dagle, P. O. Jackson, R. F. Palmer, and H. A. Ragan, Inhalation hazards to uranium miners, in: Pacific Northwest Laboratory Annual Report for 1983 to the DOE Office of Energy Research, PNL-5000, Part 1, pp. 41–44, National Technical Information Service, Springfield, VA (1984).Google Scholar
  94. 94.
    F. T. Cross, R. F. Palmer, G. E. Dagle, R. H. Busch, and R. L. Buschbom, Influence of radon daughter exposure rate, unattachment fraction, and disequilibrium on occurrence of lung tumors, Radiat. Prot. Dosim. 7, 381–384 (1984).Google Scholar
  95. 95.
    F. T. Cross, R. F. Palmer, R. H. Busch, G. E. Dagle, R. E. Filipy, and H. A. Ragan, pp. 608–623 in: Life-Span Radiation Effects Studies in Animals: What Can They Tell Us? (R. C. Thompson and J. A. Mahaffey, eds.), 22nd Hanford Life Sciences Symposium, September 27–29, 1983, Richland, WA, CONF-830951 National Technical Information Service, Springfield, VA (1987).Google Scholar
  96. 96.
    B. O. Stuart, R. F. Palmer, R. E. Filipy, and J. Gaven, Inhaled radon daughters and uranium ore dust in rodents, in: Pacific Northwest Laboratory Annual Report for 1977 to the DOE Assistant Secretary for Environment, PNL-2500, Part 1, pp. 3.70–3.72, National Technical Information Service, Springfield, VA (1978).Google Scholar
  97. 97.
    R. B. Schlesinger and M. Lippman, Selective particle deposition and bronchogenic carcinoma, Environ. Res. 15, 424–431 (1978).PubMedGoogle Scholar
  98. 98.
    V. E. Archer, in: Proceedings, Workshop of Dosimetry for Radon and Radon Daughters, pp. 23–25, ORNL-53481, Oak Ridge National Laboratory, Oak Ridge, TN, National Technical Information Service, Springfield, VA (1978).Google Scholar
  99. 99.
    National Academy of Sciences, The Effects on Populations of Exposure to Low Levels of Ionizing Radiation (BEIR-I Report), National Academy Press, Washington, DC (1972).Google Scholar
  100. 100.
    R. G. Gray, J. Lafuma, S. E. Parish, and R. Peto, pp. 592–607 in: Life-Span Radiation Effects Studies in Animals: What Can They Tell Us? (R. C. Thompson and J. A. Mahaffey, eds.), 22nd Hanford Life Sciences Symposium, September 27-29, 1983, Richland, WA, CONF-830951, National Technical Information Service, Springfield, VA (1987).Google Scholar
  101. 101.
    E. Kunz, J. Sevc, V. Placek, and J. Horacek, Lung cancer in man in relation to different time distribution of radiation exposure, Health Phys. 36, 699–706 (1979).PubMedGoogle Scholar
  102. 102.
    V. E. Archer, B. E. Carrol, H. P. Brinton, and G. Saccomanno, in: Radiological Health and Safety in Mining and Milling of Nuclear Materials, Vol. 1, pp. 21–36, IAEA Symposium, August 26–31, 1963, International Atomic Energy Agency, Vienna (1964).Google Scholar
  103. 103.
    R. F. Palmer, B. O. Stuart, and R. E. Filipy, in: Noble Gases (R. E. Stanley and A. A. Moghissi, eds.), pp. 507–519, CONF-730915, National Technical Information Service, Springfield, VA (1973).Google Scholar
  104. 104.
    B. Altshuler, N. Nelson, and M. Kuschner, Estimation of lung tissue dose from the inhalation of radon and daughters, Health Phys. 10, 1137–1161 (1964).PubMedGoogle Scholar
  105. 105.
    R. Masse, in: Pulmonary Toxicology of Respirable Particles (C. L. Sanders, F. T. Cross, G. E. Dagle, and J. A. Mahaffey, eds.), pp. 498–521, CONF-791002, National Technical Information Service, Springfield, VA (1980).Google Scholar
  106. 106.
    W. Jacobi, in: Personal Dosimetry and Area Monitoring Suitable for Radon and Daughter Products, Proceedings of NEA Specialist Meeting, pp. 33–48, Nuclear Energy Agency, OECD, Paris (1977).Google Scholar
  107. 107.
    K. D. Cliff, B. L. Davis, and J. A. Riessland, Little danger from radon, Nature 279, 12 (1979).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Fred T. Cross
    • 1
  1. 1.Biology and Chemistry DepartmentBattelle Pacific Northwest LaboratoryRichlandUSA

Personalised recommendations