• Douglas J. Crawford-Brown
Part of the Environmental Science Research book series (ESRH, volume 35)


A man walks into the doctor’s office, raises his arm and says, “Doc, it hurts when I do this.” The doctor says, “Don’t do that.” An old vaudeville joke may seem an odd start to a chapter on dosimetry, but hidden within this joke is a kernel of truth concerning the nature of dosimetry and why we bother with it. The field of radiation protection is faced with past experience concerning the uranium miners and other groups exposed to radon and its progeny. If we look carefully, there are lessons to be learned from these experiences, lessons which can guide us in determining how to act in future situations involving radiation which might differ in some way from the past experiences. For example, new experiences may differ from the past in regard to the amount of radioactivity inhaled, the kind of radioactivity inhaled, the size of the particles inhaled, or even the ages and health of the people involved.


Dose Equivalent Alpha Particle Uranium Miner Lung Deposition Critical Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Commission on Radiation Units and Measurements, Radiation Quantities and Units, ICRU Report 33, Bethesda, MD (1980).Google Scholar
  2. 2.
    H.H. Rossi, The role of microdosimetry in radiobiology, Radiat. Environ. Biophys. 17, 29 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    International Commission on Radiation Units and Measurements, Microdosimetry, ICRU Report 36, Bethesda, MD (1983).Google Scholar
  4. 4.
    E. Polig, Hit probabilities for cellular targets by bone surface seeking alpha emitters, Phys. Med. Biol. 26, 369–377 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    D. J. Crawford-Brown, Age dependent hit probibilities for lung cancer induction following exhalation of ingested radon, Proc. Second Workshop on Lung Dosimetry, Cambridge, England, September 1985 (to be published).Google Scholar
  6. 6.
    J. A. Simmonds and S. R. Richards, Microdosimetry of alpha irradiated lung, Health Phys. 46, 607 (1984).CrossRefGoogle Scholar
  7. 7.
    W. Hofmann, Microdosimetry of plutonium in lungs, Health Phys. Suppl. 1, 44, 419–429 (1983).PubMedGoogle Scholar
  8. 8.
    D. R. Fisher, In search of the relevant lung dose, in: Current Concepts in Lung Dosimetry (D. R. Fisher, ed.) CONF 820492, pp. 29–37, National Technical Information Center, U.S. Department of Energy, Washington, DC (1983).Google Scholar
  9. 9.
    ICRP Task Group on Lung Dynamics, Deposition and Retention models for internal dosimetry of the human respiratory tract, Health Phys. 12, 173–207 (1966).Google Scholar
  10. 10.
    A. VanAs and I. Webster, The morphology of mucus in mammalian pulmonary airways, Environ. Res. 7, 1–12 (1974).CrossRefGoogle Scholar
  11. 11.
    G. A. Laurenzi, The mucociliary stream, J. Med., 15, 175–176 (1973).Google Scholar
  12. 12.
    M. A. Sleigh, The Biology of Cilia and Flagella, Pergamon Press, London (1962).Google Scholar
  13. 13.
    J. Sade, N. Eliezer, A. Silberg, and A. C. Nevo, The role of mucus in transport by cilia, Am. Rev. Resp. Dis. 102, 48–52 (1970).PubMedGoogle Scholar
  14. 14.
    G. E. Angus and W. M. Turbeck, Number of alveoli in the human lung, J. Appl. Phys. 32, 483–483 (1972).Google Scholar
  15. 15.
    K. Horsfield, Quantitative morphology and structure: Functional correlations in the lung, in: The Lung: Structure, Function and Disease, W. M. Thurlbeck and M. R. Abell, eds.), p. 151, Williams and Wilkins Co., Baltimore, MD (1978).Google Scholar
  16. 16.
    E. R. Weibel, The cell population of the normal lung, in: Lung Cells in Disease (A. Bouhuys, ed.), p. 3, North Holland Publishing Co., Amsterdam (1976).Google Scholar
  17. 17.
    E. R. Weibel, Morphometry of the Human Lung, Academic Press, New York (1963).Google Scholar
  18. 18.
    C. N. Davies, A formalized anatomy of the human respiratory tract, in: International Symposium on Inhaled Particles and Vapors (C. N. Davies, ed.), p. 82, Pergamon Press, Oxford (1960).Google Scholar
  19. 19.
    H.D. Landhahl, On the removal of airborne droplets by the human respiratory tract: I. The lung, Bull Math. Biophys. 12, 43 (1950).CrossRefGoogle Scholar
  20. 20.
    W. Findeisen, Über das Absetzen Kleiner, in der Luft Suspendierter Teilchen in der Menshlichen Lunger bei der Atmung, Pfluegers Arch. J. Ges. Physiol. 236, 367 (1935).CrossRefGoogle Scholar
  21. 21.
    K. Horsfield, Models of the human bronchial tree, J. Appl. Phys. 31, 207–217 (1971).Google Scholar
  22. 22.
    H. C. Yeh and M. Schum, Models of human lung airways and their application to inhaled particle deposition, Bull. Math. Biol. 42, 461 (1980).PubMedGoogle Scholar
  23. 23.
    O. G. Raabe, H. C. Yeh, G. M. Schum, and R. F. Phalen, Tracheobronchial Geometry: Human, Dog, Rat, Hamster, Lovelace Foundation Report, LF-53, Albuquerque, NM (1976).Google Scholar
  24. 24.
    A. Hislop, D. C. F. Muir, M. Jacobson, G. Simon, and L. Reid, Postnatal growth and functions of the pre-acinar airways, Thorax 27, 265–274 (1972).PubMedCrossRefGoogle Scholar
  25. 25.
    W. Hofmann, F. Steinhausler, and E. Pohl, Dose calculations for the respiratory tract from inhaled natural radioactive nuclides as a function of age, Health Phys. 37, 517–532 (1979).PubMedCrossRefGoogle Scholar
  26. 26.
    International Commission on Radiological Protection, Report of the Task Group on Reference Man, ICRP Publication 23, Pergamon Press, New York (1974).Google Scholar
  27. 27.
    D. J. Crawford-Brown, A Generalized Age Dependent Lung Model with Applications to Radiation Standards, Oak Ridge National Laboratory Report, NUREG/CR-1955, Oak Ridge, TN (1981).Google Scholar
  28. 28.
    D. J. Crawford-Brown, Identifying critical human subpopulations by age groups: Radioactivity and the lung, Phys. Med. and Biol. 27, 539–552 (1982).CrossRefGoogle Scholar
  29. 29.
    D. J. Crawford-Brown and K. F. Eckerman, Modifications of the ICRP Task Group lung model to reflect age dependence, Radiat. Prot. Dosim. 2, 209–220 (1983).Google Scholar
  30. 30.
    R. A. Millikan, The Electron, Protons, Photons, Neutrons, Mesotrons and Cosmic Rays, 2nd Ed., University of Chicago Press, Chicago (1974).Google Scholar
  31. 31.
    P. G. Gormley and M. Kennedy, Diffusion from a stream flowing through a cylindrical tube, Proc. R. Ir. Acad. 52, 163 (1949).Google Scholar
  32. 32.
    C. N. Davies, Diffusion and sedimentation of aerosol particles from Poiseville flow in pipes, J. Aerosol Sci. 4, 317–328 (1973).CrossRefGoogle Scholar
  33. 33.
    D. V. Ingham, Diffusion of aerosols from a stream flowing through a circular tube, J. Aerosol Sci. 6, 125–132 (1975).CrossRefGoogle Scholar
  34. 34.
    J. W. Thomas, Particle loss in sampling conduits, in: Assessment of Airborne Radioactivity, p. 701, International Atomic Energy Agency, Vienna (1967).Google Scholar
  35. 35.
    R. E. Pattle, Inhaled Particles and Vapours, p. 70, Pergamon Press, Oxford (1961).Google Scholar
  36. 36.
    H. D. Landahl and S. Black, Filtration of airborne particulates through the human nose, J. Ind. Hyg. Toxicol. 29, 269 (1947).PubMedGoogle Scholar
  37. 37.
    M. Lippmann, Deposition and clearance of inhaled particles in the human nose, Ann. Otol Rhinol. Laryngol. 79, 519–528 (1970).PubMedGoogle Scholar
  38. 38.
    J. Heyder, Total deposition of aerosol particles in the human respiratory tract for nose and mouth breathing, J. Aerosol Sei. 6, 311–328 (1975).CrossRefGoogle Scholar
  39. 39.
    F. A. Fry, Charge distribution on polystyrene aerosols and deposition in the human nose, J. Aerosol Sei. 1, 135–146 (1970).CrossRefGoogle Scholar
  40. 40.
    R. F. Hounam, A. Black, and M. Walsh, The deposition of aerosol particles in the naseopharyngeal region of the human respiratory tract, J. Aerosol Sei. 2, 47–61 (1971).CrossRefGoogle Scholar
  41. 41.
    T. T. Mercer, The deposition model of the Task Group on Lung Dynamics: A comparison with recent experimental data, Health Phys. 29, 673–680 (1975).PubMedCrossRefGoogle Scholar
  42. 42.
    A. George and A. J. Breslin, Deposition of radon daughters in humans exposed to uranium mine atmospheres, Health Phys. 17, 115–124 (1969).PubMedCrossRefGoogle Scholar
  43. 43.
    W. L. Dennis, (comments on discussion) in: Inhaled Particles and Vapors (C. N. Davies, ed.), p. 88, Pergamon Press, Oxford (1961).Google Scholar
  44. 44.
    W. Stahlhofen, J. Gebhart and J. Heyder, Experimental determination of the regional deposition of aerosol particles in the human respiratory tract, J. Am. Ind. Hyg. Assoc. 41, 385–398 (1980).CrossRefGoogle Scholar
  45. 45.
    H. Landahl and R. Herrmann, Sampling of liquid aerosols by wires, cylinders and slides and the efficiency of impaction of the droplets, J. Colloid Sci. 4, 103 (1949).PubMedCrossRefGoogle Scholar
  46. 46.
    J. Johnstone, I. Isles, and D. Muir, Inertial deposition of particles in the lung, J. Aerosol Sci. 4, 269–270 (1973).CrossRefGoogle Scholar
  47. 47.
    K. Takahashe and H. Ito, A Computational Model for Regional Deposition of Aerosol Particles in the Human Lung, Technical Report of the Institute of Atomic Energy 17, Kyoto University, Kyoto, Japan (1976).Google Scholar
  48. 48.
    H. Yeh, Use of a heat transfer analogy for a mathematical model of respiratory tract deposition, Bull. Math. Biol. 36, 105 (1974).PubMedGoogle Scholar
  49. 49.
    International Commission on Radiological Protection, The Metabolism of Compounds of Plutonium and Other Actinides, ICRP Publication 19, Pergamon Press, Oxford (1972).Google Scholar
  50. 50.
    M. Friedman, F. D. Scott, D. O. Poole, R. Dougherty, G. A. Chapman, H. Watson, and M. A. Sackner, A new roentgenographic method for estimating mucus velocity in airways, Am. Rev. Resp. Dis. 115, 67–72 (1977).PubMedGoogle Scholar
  51. 51.
    D. Yeates, N. Aspin, H. Levison, M. T. Jones, and A. C. Bryan, Mucociliary trachéal transport in man, J. Appl. Phys. 39 (1975).Google Scholar
  52. 52.
    A. D. Barclay, K. J. Franklin, and R. G. Macbeth, Roentogenographic studies of the excretion of dusts from the lungs, Am. J. Roentgenol. 39, 673–686 (1938).Google Scholar
  53. 53.
    G. Gamsu, R. M. Weintraub, and J. A. F. Nadel, Clearance of tantalum from airways of different caliber in man evaluated by a roentgenographic method, Am. Rev. Resp. Dis. 107, 214–224 (1973).PubMedGoogle Scholar
  54. 54.
    B. Altshuler, N. Nelson, and M. Kuschner, Estimation of lung tissue dose from the inhalation of radon and daughters, Health. Phys. 10, 1137–1161 (1964).PubMedCrossRefGoogle Scholar
  55. 55.
    A. K. M. Haque and A. J. L. Collinson, Radiation dose to the respiratory system due to radon and its daughter products, Health Phys. 13, 431–443 (1967).PubMedCrossRefGoogle Scholar
  56. 56.
    G. A. Laurenzi, The mucociliary stream, J. Occup. Med. 15, 175–176 (1973).PubMedGoogle Scholar
  57. 57.
    W. Whaling, The energy loss of charged particles in matter, in: Handbuch der Physik (S. Flugge, ed.), p. 193, Springer, Berlin (1958).Google Scholar
  58. 58.
    H. Bichsel, Charged particle interactions, in: Radiation Dosimetry (F. H. Attix and W. C. Roesch, eds.), p. 158, Academic Press, New York (1968).Google Scholar
  59. 59.
    E. Rotondi, Energy loss of alpha particles in tissue, Radiat. Res. 33, 1–9 (1968).PubMedCrossRefGoogle Scholar
  60. 60.
    P. J. Walsh, Stopping power and range of alpha particles, Health Phys. 19, 312–316 (1970).PubMedGoogle Scholar
  61. 61.
    A. K. M. Haque, Energy expended by alpha particles in lung tissue, Br. J. Appl. Phys. 17, 905 (1966).CrossRefGoogle Scholar
  62. 62.
    N. H. Harley and B. S. Pasternack, Alpha absorption measurements applied to lung dose from radon daughters, Health Phys. 23, 771–782 (1972).PubMedCrossRefGoogle Scholar
  63. 63.
    D. J. Crawford, Radiological Risk of Actinon (219Rn), Oak Ridge National Laboratory Report ORNL/TM-7977, Oak Ridge, TN (1980).Google Scholar
  64. 64.
    D. E. Lea, Actions of Radiations on Living Cells, Cambridge University Press, London (1955).Google Scholar
  65. 65.
    W. Jacobi, The dose to the human respiratory tract by inhalation of shortlived 222Rn and 220Rn decay products, Health Phys. 10, 1163–1174 (1964).PubMedCrossRefGoogle Scholar
  66. 66.
    V. N. Kirichenko, Experimental studies of the short-lived daughters of radon in the respiratory tract, Gig. Sanit. 2, 52 (1970).Google Scholar
  67. 67.
    National Council on Radiation Protection and Measurement, Evaluation of Occupational and Environmental Exposures to Radon and Radon Daughters in the United States, NCRP Report 78, Bethesda, MD (1984).Google Scholar
  68. 68.
    H. Goldziecher, Über Baselzellen Wucherungea der Bronchial Schlemeit,” Zentralbl. Allg. Path. Pathol. Anat. 29, 506 (1918).Google Scholar
  69. 69.
    P. Kotin, D. Courington, and H. L. Falk, Pathogenesis of cancer in ciliated mucus secreting epithelium, Am. Rev. Resp. Dis. 93, 115–124 (1966).PubMedGoogle Scholar
  70. 70.
    S. Hattori, M. Matsuda, R. Tateishi, H. Nishihara, and T. Harai, Oat cell carcinoma of the lung, Cancer 30, 1014–1024 (1972).PubMedCrossRefGoogle Scholar
  71. 71.
    E. M. McDowell and B. F. Trump, Histogenesis of preneoplastic and neoplastic lesions in tracheobronchial epithelium, Surv. Synth. Pathol. Res. 2, 235–242 (1983).Google Scholar
  72. 72.
    J. Horacek, V. Placek, and J. Sevc, Histologic types of bronchogenic cancer in relation to different conditions of radiation exposure, Cancer 40, 832–835 (1977).PubMedCrossRefGoogle Scholar
  73. 73.
    R. M. Gastineau, P. J. Walsh, and N. Underwood, Thickness of bronchial epithelium with relation to exposure to radon, Health Phys. 23, 857–860 (1972).PubMedGoogle Scholar
  74. 74.
    O. G. Raabe, Deposition and Clearance of Inhaled Aerosols, Laboratory for Energy Related Health Research Report UCD 472-503, University of California, Davis (1979).Google Scholar
  75. 75.
    N. H. Harley and B. S. Pasternack, Environmental radon daughter alpha dose factors in a five-lobed human lung, Health Phys. 42, 789–799 (1982).PubMedCrossRefGoogle Scholar
  76. 76.
    A. C. Chamberlain and E. D. Dyson, The dose to the trachea and bronchi from the decay products of radon and thoron, Br.J. Radiol. 29, 317–325 (1956).PubMedCrossRefGoogle Scholar
  77. 77.
    P. J. Walsh, Radiation dose to the respiratory tract of uranium miners—A review of the literature, Environ. Res. 3, 14–36 (1970).PubMedCrossRefGoogle Scholar
  78. 78.
    W. Hofmann and F. Steinhausler, Dose calculations for infants and youths due to the inhalation of radon and its decay products, in: Proceedings of DECUS Europe Symposium, London, pp. 315-320 (1977).Google Scholar
  79. 79.
    R. Schlesinder and M. Lippmann, Particle deposition in the trachea, in vivo and hollow casts, Thorax 31, 678–684 (1976).CrossRefGoogle Scholar
  80. 80.
    G. A. Ferron, Deposition of polydisperse aerosols in two glass models representing the upper human airways, J. Aerosol Sci. 8, 409–427 (1977).CrossRefGoogle Scholar
  81. 81.
    P. Hammill, Particle deposition due to turbulent diffusion in the upper respiratory system, Health Phys. 36, 355–369 (1979).CrossRefGoogle Scholar
  82. 82.
    T. Martonen, personal communication (1986).Google Scholar
  83. 83.
    D. J. Crawford-Brown, On a theory of age dependence in the incidence of lung carcinomas following inhalation of a radioactive atmosphere, in: Current Topics in Lung Dosimetry (D. Fisher, ed.), pp. 178–188, CONF-820492, Batelle Northwest Laboratory, Richland, WA (1983).Google Scholar
  84. 84.
    T. L. Chan and M. Lippmann, Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans, J. Am. Ind. Hyg. Assoc. 41, 399–409 (1980).CrossRefGoogle Scholar
  85. 85.
    G. Giacomelli-Maltoni, C. Melandri, V. Prodi, and G. Tarroni, Deposition efficiency of monodisperse particles in the human respiratory tract, J. Am. Ind. Hyg. Assoc. 33, 603–610 (1972).CrossRefGoogle Scholar
  86. 86.
    F. Shanty, Deposition of Ultrafine Aerosols in the Respiratory Tract of Human Volunteers, Doctoral dissertation, School of Hygiene and Public Health, Johns Hopkins University, Baltimore (1974).Google Scholar
  87. 87.
    B. Altshuler, L. Yarmus, E. Palmes, and N. Nelson, Aerosol deposition in the human respiratory tract, AMA Arch. Ind. Health 15, 293–303 (1957).PubMedGoogle Scholar
  88. 88.
    N. Foord, A. Black, and M. Walsh, Regional Deposition of 2.5-7.5 μm Diameter Inhaled Particles in Healthy Male Non-Smokers, AERE Harwell Report, ML-76-2892, Great Britain (1976).Google Scholar
  89. 89.
    M. Lippmann and R. Albert, The effect of particle size on the regional deposition of inhaled aerosols in the human respiratory tract, J. Am. Ind. Hyg. Assoc. 30, 257–275 (1969).Google Scholar
  90. 90.
    F. T. Cross, N. H. Harley, and W. Hofmann, Health effects and risks from Rn-222 in drinking water, Health Phys. 48, 649 (1985).PubMedCrossRefGoogle Scholar
  91. 91.
    D. J. Crawford-Brown, Age dependent lung doses from ingested 222Rn in drinking water, submitted to Health Phys. 52, 149–156 (1987).PubMedCrossRefGoogle Scholar
  92. 92.
    I. O. Anderson and I. Nilsson, Exposure following ingestion of water containing Rn-222, in: Assessment of Radioactivity in Man, p. 317, International Atomic Energy Agency, Vienna (1964).Google Scholar
  93. 93.
    W. vonDobeln and B. Lindell, Some aspects of Rn-222 contamination following ingestion, Arkiv für Fysik 27, 531 (1964).Google Scholar
  94. 94.
    J. B. Hursh, D. A. Morken, T. P. Davis, and A. Lovaas, The fate of Rn-222 ingested by man, Health Phys. 11, 465–476 (1965).PubMedCrossRefGoogle Scholar
  95. 95.
    M. Suomela and H. Kohlos, Studies on the elimination radiation and the radiation exposure following ingestion of Rn-222 rich water, Health Phys. 23, 641–652 (1972).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Douglas J. Crawford-Brown
    • 1
  1. 1.Department of Environmental Science and Engineering, School of Public HealthUniversity of North CarolinaChapel HillUSA

Personalised recommendations