Pulse-Induced Critical Scattering (PICS), Its Methods and Its Role in Characterization

  • H. Galina
  • M. Gordon
  • B. W. Ready
  • L. A. Kleintjens

Abstract

Pulse-induced critical scattering, or PICS,1,2 is a technique for exploring the onset of phase separation in polymer systems. It has been developed at the Institute of Polymer Science of Essex University during the 1970s, with much cooperation from Koningsveld and his co-workers at the Central Laboratory of the DSM Company in Holland. The intensity of light scattered from a laser beam at selected angles is used to monitor the response of small samples to periodic fast thermal steps or “pulses.” Much sensitive information is derived from the results, whose significance is explained below by reference to the typical and schematic phase diagram in Figure 1. The purpose of PICS experiments includes the measurement of the lines and special points in such phase diagrams.

Keywords

Cloud Point Lower Critical Solution Temperature Thermodynamic Theory Metastable Region Molar Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. W. Derham, J. Goldsbrough, and M. Gordon, Pure Appl. Chem. 38, 97–116 (1974).CrossRefGoogle Scholar
  2. 2.
    M. Gordon, P. Irvine, and J. W. Kennedy,. Polym. Sci. Polym. Symp. 61, 199–220 (1977).CrossRefGoogle Scholar
  3. 3.
    M. Gordon and P. Irvine, Macromolecules 13, 761–772 (1980).CrossRefGoogle Scholar
  4. 4.
    H. Galina, M. Gordon, P. Irvine, and L. A. Kleintjens, IUPAC Symposium, 13-17 July (1981), Pure Appl. Chem. 54, 365 (1982).CrossRefGoogle Scholar
  5. 5.
    P. Debye, J. Chem. Phys. 31, 680 (1959).CrossRefGoogle Scholar
  6. 6.
    Th. G. Scholte, J. Polym. Sci. A2 8, 841 (1970).CrossRefGoogle Scholar
  7. 7.
    Th. G. Scholte, J. Polym. Sci. C 39, 281 (1972).CrossRefGoogle Scholar
  8. 8.
    P. J. Flory, J. Chem. Phys. 31, 680 (1959).CrossRefGoogle Scholar
  9. 9.
    M. L. Huggins, Ann. N. Y. Acad. Sci. 43, 1 (1942).CrossRefGoogle Scholar
  10. 10.
    J. W. Gibbs, Trans. Conn. Acad. 3, 108, 343 (1876/8); reprint in The Scientific Papers of J. W. Gibbs, Vol. I, Dover, New York (1961).Google Scholar
  11. 11.
    P. Debye, H. Coll, and D. Woermann, J. Chem. Phys. 33, 1746 (1960).CrossRefGoogle Scholar
  12. 12.
    P. Debye, B. Chu, and D. Woermann, J. Chem. Phys. 36, 1803 (1962).CrossRefGoogle Scholar
  13. 13.
    B. Chu, J. Chem. Phys. 47, 3816 (1976)CrossRefGoogle Scholar
  14. B. Chu, F. J. Schoenes, and M. E. Fisher, Phys. Rev. 185, 219 (1969).CrossRefGoogle Scholar
  15. 14.
    W. Burchard and K. Kajiwara, Proc. R. Soc. London Ser. A 316, 185–199 (1970).CrossRefGoogle Scholar
  16. 15.
    J. M. G. Cowie, J. Goldsbrough, M. Gordon, and B. W. Ready, BP 1, 377, 478: DP 2, 161, 555; USP 3, 807, 865.Google Scholar
  17. 16.
    J. W. Kennedy, M. Gordon, and G. A. Alvarez, Polimery, Warsaw, No. 10, 464-471 (1975).Google Scholar
  18. 17.
    R. Koningsveld and J. A. Staverman, J. Polym. Sci. A2 6, 349 (1968).CrossRefGoogle Scholar
  19. 18.
    K. W. Derham and M. Gordon, Proc. of Polymerphysik(Ch. Ruscher, ed.), Ges. der DDR, Berlin (Symposium held in Leipzig, 11–14 September 1974).Google Scholar
  20. 19.
    L. A. Kleintjens, R. Koningsveld, and M. Gordon, Macromolecules, 13, 303 (1980).CrossRefGoogle Scholar
  21. 20.
    L. A. Kleintjens, Ph.D. thesis, Essex (1979).Google Scholar
  22. 21.
    L. Schafer, private communication (to be published).Google Scholar
  23. 22.
    K. R. Roberts, J. A. Torkington, M. Gordon, and S. B. Ross-Murphy, J. Polym. Sci. Polym. Symp. 61, 45–62 (1977).CrossRefGoogle Scholar
  24. 23.
    P. Irvine, Ph. D. thesis, University of Essex (1979).Google Scholar
  25. 24.
    N. Kuwahara, M. Nakata, and M. Kaneko, Polymer 14, 415–479 (1973).CrossRefGoogle Scholar
  26. 25.
    N. Nakata, T. Dobashi, N. Kuwahara, M. Kaneko, and B. Chu, Phys. Rev. A. 18, 2683 (1978).CrossRefGoogle Scholar
  27. 26.
    J. Hashizume, A. Teramoto, and H. Fujita, J. Polym. Sci. Polym. Phys. Ed. 19, 1405–1422 (1981).CrossRefGoogle Scholar
  28. 27.
    R. Koningsveld, W. H. Stockmayer, J. W. Kennedy, and L. A. Kleintjens, Macro-molecules 7, 73 (1974).CrossRefGoogle Scholar
  29. 28.
    J. W. Kennedy, M. Gordon, J. Essam, and P. Whittle, J. Chem. Soc. Faraday Trans. 2 73, 1289–1307 (1977).CrossRefGoogle Scholar
  30. 29.
    P. Irvine and M. Gordon, Proc. R. Soc. London Ser. A 375, 397–408 (1981).CrossRefGoogle Scholar
  31. 30.
    P. Irvine and J. W. Kennedy, Macromolecules 15, 473–528 (1982).CrossRefGoogle Scholar
  32. 31.
    M. Gordon and P. Irvine, Polymer 20, 1450 (1979)CrossRefGoogle Scholar
  33. Corrigenda, Polymer 21, 472 (1980).CrossRefGoogle Scholar
  34. 32.
    R. Slagowski, B. Tsai, and D. Mclntrye, Macromolecules 9, 687 (1976).CrossRefGoogle Scholar
  35. 33.
    K. W. Derham, J. Goldsbrough, M. Gordon, R. Koningsveld and L. A. Kleintjens, Makromol. Chem. Suppl. 1, 401 (1975).CrossRefGoogle Scholar
  36. 34.
    B. Appelt and G. Meyerhoff, Macromolecules 13, 657–662 (1980).CrossRefGoogle Scholar
  37. 35.
    H. Hack and G. Meyerhoff, Makromol. Chem. 179, 2475–2488 (1978).CrossRefGoogle Scholar
  38. 36.
    J. A. Torkington, L. Kleintjens, M. Gordon, and B. W. Ready, Br. Polym. J. 10, (1978)Google Scholar
  39. M. Gordon and B. W. Ready, USP 4, 131, 369.Google Scholar
  40. 37.
    O. Olabisi, L. M. Robeson, and M. T. Shaw, Polymer-Polymer Miscibility, Academic Press, New York (1979).Google Scholar
  41. 38.
    G. Glockner, Polymercharakterisierung durch Flüssigkeitschromatographie, VEB Deutscher Verlag der Wissenschaften, Berlin (1980).Google Scholar
  42. 39.
    M. Gordon, J. Goldsbrough, B. W. Ready, and K. Derham, Industrial Polymers: Characterized by Molecular Weight(J. H. S. Green and R. Dietz, eds.), pp. 45-51, Transcripta Books, National Physical Laboratory, London (1973).Google Scholar
  43. 40.
    R. Koningsveld and L. A. Kleintjens, Pure Appl. Chem. Macromol. Chem. Suppl. 8, 197 (1973).Google Scholar
  44. 41.
    R. Koningsveld, L. A. Kleintjens, and H. M. Schoffeleers, Pure Appl. Chem. 39, 1 (1974).CrossRefGoogle Scholar
  45. 42.
    R. Koningsveld, Br. Polym. J. 7, 435 (1975).CrossRefGoogle Scholar
  46. 43.
    L. A. Kleintjens, H. M. Schoffeleers, and L. Domingo, Br. Polym. J. 8, 29 (1976).CrossRefGoogle Scholar
  47. 44.
    R. Koningsveld and L. A. Kleintjens, J. Polym. Sci. Polym. Symp. 61, 221 (1977).CrossRefGoogle Scholar
  48. 45.
    R. Koningsveld and L. A. Kleintjens, Br. Polym. J. 9, 213 (1977).CrossRefGoogle Scholar
  49. 46.
    R. Koningsveld, Ber. Bunsenges. 81, 960 (1977).Google Scholar
  50. 47.
    L. A. Kleintjens, H. M. Schoffeleers, and R. Koningsveld, Ber. Bunsenges. 81, 980 (1977).CrossRefGoogle Scholar
  51. 48.
    R. Koningsveld and R. F. Stepto, Macromolecules 10, 1166 (1977).CrossRefGoogle Scholar
  52. 49.
    R. Koningsveld, Bull Soc. Chim. Beograd. 44, 5 (1979).Google Scholar
  53. 50.
    M. H. Onclin, L. A. Kleintjens, and R. Koningsveld, Makromol. Chem. Suppl. 3, 197 (1979).CrossRefGoogle Scholar
  54. 51.
    R. Koningsveld, L. A. Kleintjens, and M. H. Onclin,. Macromol. Sci. Phys. B 18(3), 363 (1980).CrossRefGoogle Scholar
  55. 52.
    L. A. Kleintjens, M. H. Onclin, and R. Koningsveld, EFCE Publ. Ser. 11, Proc. Berlin Conf., Part II, 521 (1980).Google Scholar
  56. 53.
    R. Koningsveld, M. H. Onclin, and L. A. Kleintjens, Proc. MMI, MMI Press Symp, Ser., 2 (Polym. Compat. Incompat.), 25–58 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • H. Galina
    • 1
  • M. Gordon
    • 2
  • B. W. Ready
    • 3
  • L. A. Kleintjens
    • 4
  1. 1.Instytut Technologii OrganiccznejWroclawPoland
  2. 2.The Statistical LaboratoryUniversity of CambridgeCambridgeUK
  3. 3.Department of ChemistryWivenhoe ParkColchesterUK
  4. 4.Research and PatentsDSMGeleenHolland

Personalised recommendations