Dielectric and Electroviscous Properties in Flowing Polymer Systems

  • Hermann Block


The dynamic behavior of polymer solutions and their relation to macro-molecular properties is most commonly investigated in terms of the study of viscosity or of dynamic birefringence. Of these techniques the latter provides the more direct information about macromolecular conformation and distortion in shear while the former, in terms of viscoelastic behavior in particular, gives perhaps more direct evidence on the normal mode relaxations in flow. As well as these dynamic techniques which apply to solutions being subjected to flow fields there are a wide range of techniques which are extensively applied in still solutions with the purpose of obtaining information on the conformation and molecular motion of macromolecules. However, these techniques have only infrequently been employed in situations where the solution is simultaneously subjected to a flow field. At least in principle, extra information characterizing macromolecules or even colloidal or particulate suspensions can result from investigating shear induced changes in some of these properties. Thus, changes in scattered light intensity1 and in permittivity in flow have received some attention and it is the latter technique which is the subject of this chapter. Although no formal name has been coined for the study of permittivity of flowing liquids it is suggested that the term flow modified permittivitymight be appropriate.


Shear Rate Relative Permittivity High Shear Rate Ethyl Cellulose Induce Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Peterlin, W. Heller, and M. Nakagi, J. Chem. Phys. 28, 470–476 (1958)CrossRefGoogle Scholar
  2. A. F. Stevenson and H. L. Bhatnagar, J. Chem. Phys. 29, 1336–1339 (1958)CrossRefGoogle Scholar
  3. M. Nakagi and W. Heller, J. Polym. Sci. 38, 117–131 (1959)CrossRefGoogle Scholar
  4. W. Heller, E. Wada, and L. A. Papazian, J. Polym. Sci. 47, 481–84 (1960)CrossRefGoogle Scholar
  5. A. Peterlin and C. Reinhold, J. Chem. Phys. 40, 1029–1032 (1964); 42, 2172-2176 (1964)CrossRefGoogle Scholar
  6. C. Reinhold and A. Peterlin, Physica 31, 522–540 (1965)CrossRefGoogle Scholar
  7. A. F. Stevenson, J. Chem. Phys. 49, 4545–4550 (1968)CrossRefGoogle Scholar
  8. R. Tabian, M. Nakagi, and L. Papazian, J. Chem. Phys. 52, 4294–4305 (1970).CrossRefGoogle Scholar
  9. 2.
    L. de Brouckere and M. Mandel, Adv. Chem. Phys. 1, 77–118 (1958)CrossRefGoogle Scholar
  10. W. H. Stockmayer, Pure Appl. Chem. 15, 539–543 (1967)CrossRefGoogle Scholar
  11. H. Block and A. M. North, Adv. Mol. Relaxation Proc. 1, 309–374 (1970)CrossRefGoogle Scholar
  12. A. M. North, Chem. Soc. Rev. 1, 49–72 (1972)CrossRefGoogle Scholar
  13. H. Block, Adv. Polym. Sci. 33, 93–167 (1979).CrossRefGoogle Scholar
  14. 3.
    M. W. Volkenstein, Configurational Statistics of Polymeric Chains, Interscience, New York (1966)Google Scholar
  15. P. J. Flory, Statistical Mechanics of Chain Molecules, Interscience, New York (1969)Google Scholar
  16. P. J. Flory, Pure Appl. Chem. 26, 309–326 (1971)CrossRefGoogle Scholar
  17. J. E. Mark, Ace. Chem. Res. 7, 218–225 (1974).CrossRefGoogle Scholar
  18. 4.
    N. Saito and T. Kato, J. Phys. Soc. Japan 12, 1393–1402 (1957).CrossRefGoogle Scholar
  19. 5.
    B. G. Barisas, Macromolecules 7, 930–933 (1974).CrossRefGoogle Scholar
  20. 6.
    W. M. Winslow, U. S. Patent 2, 417, 850 (1947).Google Scholar
  21. 7.
    W. M. Winslow, J. Appl. Phys. 20, 1137–1140 (1949).CrossRefGoogle Scholar
  22. 8.
    G. I. Taylor, Proc. R. Soc. London Ser. A 157, 546–564 (1936).CrossRefGoogle Scholar
  23. 9.
    J. V. Champion, Proc. Phys. Soc. 75, 421–433 (1960).CrossRefGoogle Scholar
  24. 10.
    H. Block, E. M. Gregson, W. D. Ions, G. Powell, R. P. Singh, and S. M. Walker, J. Phys. E: Sci. Instrum. 11, 251–255 (1978).CrossRefGoogle Scholar
  25. 11.
    H. Block, E. M. Gregson, A. Qin, G. Tsangaris, and S. M. Walker, Phys. E: Sci. Instrum. 16, 896–902 (1983).CrossRefGoogle Scholar
  26. 12.
    G.B. Jeffery, Proc. R. Soc. LondonSer. A 102, 161–179 (1923).CrossRefGoogle Scholar
  27. 13.
    J. G. Kirkwood, Rec. Trav. Chim. 68, 649–660 (1949).CrossRefGoogle Scholar
  28. 14.
    A. Peterlin, Z. Phys. 111, 232–263 (1938).CrossRefGoogle Scholar
  29. 15.
    H. Block, W. D. Ions, G. Powell, R. P. Singh, and S. M. Walker, Proc. R. Soc. LondonSe r. A 352, 153–167 (1976).CrossRefGoogle Scholar
  30. 16.
    S. Takashima, J. Phys. Chem. 74, 446–452 (1970).CrossRefGoogle Scholar
  31. 17.
    H. Block, E. M. Gregson, A. Ritchie, and S. M. Walker, Polymer 24, 859–864 (1983).CrossRefGoogle Scholar
  32. 18.
    G. Tsangaris, Ph. D. thesis, University of Liverpool (1981).Google Scholar
  33. 19.
    H. Block, Poly(y-benzyl-L-glutamate) and other glutamic acid containing polymers, Vol. 9, Polymer Monographs(M. B. Huglin, ed.) Gordon and Breach Science Publishers, New York (1983).Google Scholar
  34. 20.
    A. Peterlin and C. Reinhold, Kolloid Z. Z. Polym. 204, 23–28 (1965).CrossRefGoogle Scholar
  35. 21.
    B. L. Funt and S. G. Mason, Can. J. Chem. 29, 848–856 (1951)CrossRefGoogle Scholar
  36. H. Hartmann and R. Jaenicke, Z. Phys. Chem. N. F. 6, 220–241 (1956).CrossRefGoogle Scholar
  37. 22.
    P. Wendisch, Kolloid Z. Z. Polym. 199, 27–31 (1964).CrossRefGoogle Scholar
  38. 23.
    H. Block, W. D. Ions, and S. M. Walker. Polym. Sci. Polym. Phys. Edn. 16, 989–998 (1978).CrossRefGoogle Scholar
  39. 24.
    H. Block, K. M. W. Goodwin, E. M. Gregson, and S. M. Walker, Nature 275, 632–634 (1978).CrossRefGoogle Scholar
  40. 25.
    H. Block, E. Kluk, J. McConnell, and B. K. P. Scaife, J. Colloid Interface Sci. 101, 320–329 (1984).CrossRefGoogle Scholar
  41. 26.
    D. L. Klass and T. W. Martinek, J. Appl. Phys. 38, 64–74 (1967).CrossRefGoogle Scholar
  42. 27.
    D. L. Klass and T. W. Martinek, J. Appl. Phys. 38, 75–80 (1967).CrossRefGoogle Scholar
  43. 28.
    H. Uejima, Jpn. J. Appl. Phys. 11, 319–325 (1972).CrossRefGoogle Scholar
  44. 29.
    A. Okagawa, R. G. Cox, and S. G. Mason, J. Colloid Interface Sci. 47, 536–567 (1974).CrossRefGoogle Scholar
  45. 30.
    A. Okagawa and S. G. Mason, J. Colloid Interface Sci. 47, 568–587 (1974).CrossRefGoogle Scholar
  46. 31.
    E. M. Gregson, Ph. D. thesis, University of Liverpool (1979).Google Scholar
  47. 32.
    H. T. Strandrud, Hydraulics and Pneumatics, 139–143 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Hermann Block
    • 1
  1. 1.School of Industrial ScienceCranfield Institute of TechnologyCranfield, BedfordUK

Personalised recommendations