Skip to main content

The Electric Field Gradient and the Quadrupole Interaction

  • Chapter
Mössbauer Spectroscopy Applied to Inorganic Chemistry

Part of the book series: Modern Inorganic Chemistry ((MICE,volume 1))

Abstract

The Mössbauer effect has become a popular method in analytical chemistry. In contrast to other techniques such as x-ray spectroscopy, NMR, EPR, and MCD where highly sophisticated evaluation procedures are applied to obtain reliable information on the chemical compound, the Mössbauer effect is generally used on a low level concerning the evaluation of quadrupole split spectra. This procedure on a low level is favored by the structure of the spectra especially the simple doublet of the 3/2 → 1/2 nuclear transitions in paramagnetic and diamagnetic compounds. The separation of the two absorption lines, the quadrupole splitting ΔE Q and the center of the two lines, the isomer shift, are easily derived from the spectra. To obtain these two parameters, which comprise already a lot of chemical information, there is no need of a complete theory. Further information from the quadrupole split spectra is given by the sign and the asymmetry of the electric field gradient tensor at the nucleus and its orientation with respect to the crystal axes. The evaluation of these parameters from the Mössbauer spectra requires already a relatively complicated theory which is only available in original publications.1–3 The situation is made even more difficult by the matter of fact that in most cases the tensor components cannot be uniquely measured; rather, only interrelations between them are obtained from the measured quantities of the spectra.4 A further complication is introduced by an anisotropic vibrational amplitude of the Mössbauer atom which gives rise to an anisotropic Debye—Waller factor. These points prevented a general application of all possibilities of the Mössbauer effect, although very nice work had been done on sodium nitroprusside5 and on the heme group of deoxymyoglobin6 and on CO-liganded myoglobin7 where the difficulties concerning the preparation of sufficiently large single crystals enriched in 57Fe had to be overcome. On the other hand the calculation of the electric field gradient in molecular crystals by molecular orbital (MO) approaches has been improved very much,8 so that a comparison with detailed experimental data has become desirable. It seems therefore to be justified to present in detail the mathematical tool for the evaluation of the quadrupole split Mössbauer spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Frauenfelder, D.E. Nagle, R.D. Taylor, D.R.F. Cochran, and W.M. Visscher, Phys. Rev. 126, 1065 (1962).

    Article  CAS  Google Scholar 

  2. M. Blume and O.C. Kistner, Phys. Rev. 171, 417 (1968).

    Article  Google Scholar 

  3. R.M. Housley, R.W. Grant, and U. Gonser, Phys. Rev. 178, 514 (1969).

    Article  CAS  Google Scholar 

  4. R. Zimmermann, Nucl. Instrum. Methods 128, 537 (1975).

    Article  CAS  Google Scholar 

  5. R.W. Grant, R.M. Housley, and U. Gonser, Phys. Rev. 178, 523 (1969).

    Article  CAS  Google Scholar 

  6. Y. Maeda, T. Harami, A. Trautwein, and U. Gonser, Z. Naturforsch. 31b, 487 (1976).

    Google Scholar 

  7. F. Parak, U.F. Thomanek, D. Bade, and B. Wintergerst, Z. Naturforsch. 32c, 507 (1977).

    CAS  Google Scholar 

  8. M. Grodzicki, S. Lauer, and A.X. Trautwein, in Mössbauer Spectroscopy and its Chemical Applications, J.G. Stevens and G.K. Shenoy eds., Advances in Chemistry Series No. 194, American Chemical Society, Washington, D.C., 1981, p. 3.

    Google Scholar 

  9. R. Zimmerman, Chem. Phys. Lett. 34, 416 (1975).

    Article  Google Scholar 

  10. Alumuddin, A. Lal, and K. Rama Reddy, Nuovo Cimento 32B, 389 (1976).

    Google Scholar 

  11. H. Spiering, Hyperfine Interactions 3, 213 (1977).

    Article  CAS  Google Scholar 

  12. R.M. Steffen and K. Alder, in The Electrotnagnetic Interaction in Nuclear Spectroscopy, W.D. Hamilton, ed., North-Holland, Amsterdam, 1975.

    Google Scholar 

  13. U. Gonser and H.D. Pfannes, J. Phys. (Paris) 35, C6–113 (1974).

    Article  Google Scholar 

  14. H.D. Pfannes and H. Fischer, Appl. Phys. 13, 317 (1977).

    Article  CAS  Google Scholar 

  15. H. Spiering and H. Vogel, J. Phys. (Paris) 40, C2–50 (1979).

    Article  Google Scholar 

  16. M. Rots, R. Coussement, J. Claes, and L. Hermans, Hyperfine Interactions 11, 185 (1981).

    Article  CAS  Google Scholar 

  17. V.I. Goldanskii, G.M. Gorodinskii, S.V. Karyagin, L.A. Korytko, L.M. Krizhanskii, E.F. Makarov, I.P. Suzdalev, and V.V. Khrapov, Proc. Acad. Sci. USSR, Phys. Chem. Sect. 147, 766 (1963).

    Google Scholar 

  18. S.V. Karyagin, Dokl. Akad. Nauk. SSSR 148, 1102 (1963).

    Google Scholar 

  19. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford, 1970.

    Google Scholar 

  20. P.G.L. Williams and G.M. Bancroft, in Mössbauer Effect Methodology, I.J. Gruverman, ed., Plenum Press, New York, 1971, Vol. 7, p. 39.

    Google Scholar 

  21. P. Zory, Phys. Rev. 140, A1401 (1965).

    Article  Google Scholar 

  22. S. Kareem, M. Ali, Alumuddin, and R.K. Tyagi, Proc. of the International Conference on the Application of the Mössbauer Effect, Jaipur, India, 1981, p. 583.

    Google Scholar 

  23. C.L. Chein, S. De Benedetti, and F. de S. Barros, Phys. Rev. B 10, 3913 (1974).

    Article  Google Scholar 

  24. P. Imbert, Phys. Lett. 8, 95 (1964).

    Article  CAS  Google Scholar 

  25. R.M. Housley and U. Gonser, Phys. Rev. 171, 480 (1968).

    Article  CAS  Google Scholar 

  26. U. Gonser and H. Fischer, in Mössbauer Spectroscopy II, U. Gonser, ed., Springer-Verlag, Berlin, 1981, p. 49.

    Chapter  Google Scholar 

  27. U. Fano, Rev. Mod. Phys. 29, 74 (1957).

    Article  Google Scholar 

  28. M.E. Rose, Elementary Theory Of Angular Momentum, John Wiley, New York, 1957.

    Google Scholar 

  29. M. Lax, Rev. Mod. Phys. 126, 1045 (1962).

    Article  Google Scholar 

  30. G.T. Trammell, Phys. Rev. 126, 1045 (1962).

    Google Scholar 

  31. G.T. Trammell and J.P. Hannon, Phys. Rev. 180, 337 (1969).

    Article  CAS  Google Scholar 

  32. A.M. Afanas’ev and Y. Kagan, Phys. Lett. 31a, 38 (1970).

    Article  Google Scholar 

  33. D.L. Nagy, Appl. Phys. 17, 269 (1978).

    Google Scholar 

  34. H. Prosser, F.E. Wagner, G. Wortmann, and G.M. Kalvius, Hyperfine Interactions 1, 25 (1975).

    Article  CAS  Google Scholar 

  35. J.M. Greneche and F. Varret, J. Phys. (Paris) Lett. 43, L233 (1982).

    Article  CAS  Google Scholar 

  36. T. Ericson and R. Wappling, J. Phys. (Paris) 37, C6–719 (1976).

    Article  Google Scholar 

  37. U. Gonser, J. Phys. Chem. 66, 564 (1962).

    Article  CAS  Google Scholar 

  38. R. Chandra and T. Ericsson, Hypetfine Interactions 7, 229 (1979).

    Article  CAS  Google Scholar 

  39. C.L. Chien and A.W. Sleight, Phys. Rev. B 18, 2031 (1978).

    Article  CAS  Google Scholar 

  40. V.I. Goldanskii and E.F. Makarov, in Chemical Applications of Mössbauer Spectroscopy, V.I. Goldanskii and R.H. Herber, eds., p. 105, Academic Press, New York, 1968.

    Google Scholar 

  41. E.R. Bauminger, A. Diamant, 1. Feiner, 1. Nowik, and S. Ofer, Phys. Lett. 50A, 321 (1974).

    Article  Google Scholar 

  42. H. Armon, E.R. Bauminger, A. Diamant, I. Nowik, and S. Ofer, Solid State Commun. 15, 543 (1974).

    Article  CAS  Google Scholar 

  43. M.O. Faltens and D.A. Shirley, J. Chem. Phys. 53, 4249 (1970).

    Article  CAS  Google Scholar 

  44. H.D. Bartunik, W. Potzel, R.L. Mössbauer, and G. Kaindl, Z. Phys. 240, 1 (1970).

    Article  CAS  Google Scholar 

  45. J. Danon, in Mössbauer Spectroscopy and its Applications, IAEA, Vienna, 1972.

    Google Scholar 

  46. A. Rosencwaig and D.T. Cromer, Acta Crystallogr. 12, 704 (1959).

    Google Scholar 

  47. M.T. Hirvonen, A.P. Jauho, T.E. Katila, J.A. Pohjonen, and K.J. Riski, J. Phys. (Paris) 37, C6–501 (1976).

    Article  Google Scholar 

  48. W. Keune, S.K. Date, I. Dèzsi, U. Gonser, J. Appl. Phys. 46, 3914 (1975).

    Article  CAS  Google Scholar 

  49. G.A. Bykow, P.Z. Hien, Soy. Phys. JETP 16, 646 (1963).

    Google Scholar 

  50. H. Spiering and H. Vogel, Hyperfine Interactions 3, 221 (1977).

    Article  CAS  Google Scholar 

  51. A.J. Stone, Nucl. Instrum. Methods 107, 285 (1973).

    Google Scholar 

  52. R.M. Housley, U. Gonser, and R.W. Grant, Phys. Rev. Lett. 20, 1279 (1968).

    Article  CAS  Google Scholar 

  53. M.C.D. Ure and P.A. Flinn, in Mössbauer Effect Methodology, 1.J. Gruverman, ed., Plenum Press New York, 1971, Vol. 7.

    Google Scholar 

  54. R. Zimmermann and R. Doerfler, J. Phys. (Paris) 41, C1–107 (1980).

    Google Scholar 

  55. T.C. Gibb, J. Phys. C, Solid State Phys. 7, 1001 (1974).

    Google Scholar 

  56. V.I. Goldanskii, E.F. Makarov, I.P. Suzdalev, and 1.A. Vinogradov, Soy. Phys. JETP 31, 407 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spiering, H. (1984). The Electric Field Gradient and the Quadrupole Interaction. In: Long, G.J. (eds) Mössbauer Spectroscopy Applied to Inorganic Chemistry. Modern Inorganic Chemistry, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0462-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0462-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0464-5

  • Online ISBN: 978-1-4899-0462-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics