Advertisement

Spectral Data Reduction and Refinement

  • Geoffrey Longworth
Chapter
Part of the Modern Inorganic Chemistry book series (MICE, volume 1)

Abstract

This chapter is divided into eight sections. The introduction is followed by a description of a general-purpose program for fitting Mössbauer spectra under the “thin absorber” approximation. Section 3 deals with some of the perils of using chi-squared (χ 2) as a goodness of fit parameter, while Section 4 describes fitting procedures when the thin absorber approximation is not valid and the full transmission integral must be used. It is not always possible to calculate the energy levels in closed form, and examples where the interaction Hamiltonian has been solved are mentioned briefly in Section 5. The fitting of spectra when the hyperfine parameters display a range of values is discussed in Section 6, and in Section 7 the stripping procedure for complex spectra is mentioned. Finally, examples are given of simple routines for use in microcomputers and minicomputers in Section 8. Several review articles exist in which some of the problems encountered in data analysis are discussed.1–3

Keywords

Hyperfine Field Quadrupole Interaction Hyperfine Parameter Mossbauer Spectrum Source Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.M. Kalvius and E. Kankeleit, in Mössbauer Spectroscopy and its Applications, IAEA, Vienna, 1972, pp. 9–88.Google Scholar
  2. 2.
    R.L. Cohen and G.K. Wertheim, Methods Exp. Phys. 11, 307 (1974).Google Scholar
  3. 3.
    G.K. Shenoy, J.M. Friedt, H. Maletta, and S.L. Ruby, in Mössbauer Effect Methodology, I.J. Gruverman, C.W. Seidel, and D.K. Dieterly, eds., Vol. 9, Plenum Press, New York, 1974, p. 277.Google Scholar
  4. 4.
    S. Margulies and J.R. Ehrman, Nucl. Instrum. Methods 12, 131 (1961).CrossRefGoogle Scholar
  5. 5.
    W. Kündig, Nucl. Instrum. Methods 48, 219 (1967).CrossRefGoogle Scholar
  6. 6.
    J.R. Gabriel and S.L. Ruby, Nucl. Instrum. Methods 36, 23 (1965).CrossRefGoogle Scholar
  7. 7.
    G.K. Shenoy and B.D. Dunlap, Nucl. Instrum. Methods 71, 285 (1969).CrossRefGoogle Scholar
  8. 8.
    M.F. Bent, B.I. Persson, and D.G. Agresti, Comput. Phys. Commun. I, 67 (1969).Google Scholar
  9. 9.
    D. Agresti, M. Bent, and B. Persson, Nucl. Instrum. Methods 72, 235 (1969).CrossRefGoogle Scholar
  10. 10.
    J.R. Gabriel and D. Olsen, Nucl. Instrum. Methods 70, 209 (1969).CrossRefGoogle Scholar
  11. 11.
    K.A. Hardy, D.C. Russell, R.M. Wilenzick, and R.D. Purrington, Nucl. Instrum. Methods 82, 72 (1970).CrossRefGoogle Scholar
  12. 12.
    B.L. Chrisman and T.A. Tumolillo, Comput. Phys. Commun. 2, 322 (1971).CrossRefGoogle Scholar
  13. 13.
    R. Robinette, J.G. Cosgrove, and R.L. Collins, Nucl. Instrum. Methods 105, 509 (1972).CrossRefGoogle Scholar
  14. 14.
    G.R. Davidson, Nucl. Instrum. Methods 107, 557 (1973).Google Scholar
  15. 15.
    T.E. Cranshaw, J. Phys. E: Sci. Instrum. 7, 122 (1974).Google Scholar
  16. 16.
    W. Wilson and L.J. Swartzendruber, Comput. Phys. Commun. 7, 151 (1974).CrossRefGoogle Scholar
  17. 17.
    W.R. Dunham, C.T. Wu, R.M. Polichar, R.H. Sands, and L.J. Harding, Nucl. Instrum. Methods 145, 537 (1977).CrossRefGoogle Scholar
  18. 18.
    G. Lang and B.W. Dale, Nucl. Instrum. Methods 116, 567 (1974).CrossRefGoogle Scholar
  19. 19.
    K. Ruebenbauer and T. Birchall, Hyberfine Interactions, 7, 125 (1979).CrossRefGoogle Scholar
  20. 20.
    H. Nullens, G. de Roy, P. Van Espen, F. Adams, and E.F. Vansant, Anal. Chim. Acta 122, 373 (1980).CrossRefGoogle Scholar
  21. 21.
    Harwell Subroutine Library Catalogue, M.J. Hopper, ed., UKAEA report, AERE-R 9185 (4th Ed.), 1981.Google Scholar
  22. 22.
    M.J. Evans and P.J. Black, J. Phys. C: Solid State Phys. 3, 2167 (1970).CrossRefGoogle Scholar
  23. 23.
    J.M. Daniels, Can. J. Phys. 59, 182 (1981).Google Scholar
  24. 24.
    S.L. Ruby, in Mössbauer Effect Methodology, I.J. Gruverman and C.W. Seidel, eds., Vol. 8, Plenum Press, New York, 1973, p. 263.Google Scholar
  25. 25.
    R.E. Meads, M. Place, F.W.D. Woodhams, and R.C. Clark, Nucl. Instrum. Methods 98, 29 (1972).CrossRefGoogle Scholar
  26. 26.
    S.A. Wender and N. Hershkowitz, Nucl. Instrum. Methods 98, 105 (1972).CrossRefGoogle Scholar
  27. 27.
    N. Hershkowitz, R.D. Ruth, S.A. Wender, and A.B. Carpenter, Nucl. Instrum. Methods 102, 205 (1972).CrossRefGoogle Scholar
  28. 28.
    A.J. Stone, Nucl. Instrum. Methods 107, 285 (1973).Google Scholar
  29. 29.
    G. Hembree and D.C. Price, Nucl. Instrum. Methods 108, 99 (1973).CrossRefGoogle Scholar
  30. 30.
    G.K. Shenoy and J.M. Friedt, Phys. Rev. Lett. 31, 419 (1973).CrossRefGoogle Scholar
  31. 31.
    G.K. Shenoy and J.M. Friedt, Nucl. Instrum. Methods 116, 573 (1974).CrossRefGoogle Scholar
  32. 32.
    G. Dehe, B. Seidel, and W. Meisel, Nucl. Instrum. Methods 133, 381 (1976).CrossRefGoogle Scholar
  33. 33.
    E. Gerdau, W. Rath, and H. Winkler, Z. Phys. 257, 29 (1972).CrossRefGoogle Scholar
  34. 34.
    J. Heberle and S. Franco, Z. Naturforsch. 23A, 1439 (1968).Google Scholar
  35. 35.
    B.T. Cleveland, Z. Naturforsch 27A, 370 (1972).Google Scholar
  36. 36.
    B.T. Cleveland and J. Heberle, Phys. Lett. 36A, 33 (1971).CrossRefGoogle Scholar
  37. 37.
    B.T. Cleveland and J. Heberle, Phys. Lett. 40A, 13 (1972).CrossRefGoogle Scholar
  38. 38.
    M.C. Dibar Ure and P.A. Flinn, in Mössbauer Effect Methodology, I.J. Gruverman, ed., Vol. 7, Plenum Press, New York, 1971, p. 245.Google Scholar
  39. 39.
    T.M. Lin and R.S. Preston, in Mössbauer Effect Methodology, I.J. Gruverman, C.W. Seidel, and D.K. Dieterly, eds., Vol. 9, Plenum Press, New York, 1974, p. 205.Google Scholar
  40. 40.
    G. Le Caër, J.M. Dubois, L. Häggström, and T. Ericsson, Nucl. Instrum. Methods 157, 127 (1978).CrossRefGoogle Scholar
  41. 41.
    C.L. Chien, in Nuclear and Electron Resonance Spectroscopies Applied to Materials Science, E.N. Kaufmann and G.K. Shenoy, eds., Elsevier North-Holland Inc., New York, 1981, p. 157.Google Scholar
  42. 42.
    C.C. Tsuei, G. Longworth, and S.C.H. Lin, Phys. Rev. 170, 603 (1968).CrossRefGoogle Scholar
  43. 43.
    T.E. Sharon and C.C. Tsuei, Phys. Rev. 85, 1047 (1972).Google Scholar
  44. 44.
    B. Window, J. Phys. E: Sci. Instrum. 4, 401 (1971).CrossRefGoogle Scholar
  45. 45.
    J. Hesse and A. Rübartsch, J. Phys. E: Sci. Instrum. 7, 526 (1974).CrossRefGoogle Scholar
  46. 46.
    G. Le Caër and J.M. Dubois, J. Phys. E: Sci. Instrum. 12, 1083 (1979).CrossRefGoogle Scholar
  47. 47.
    P. Levitz, D. Bonnin, G. Calas, and A.P. Legrand, J. Phys. E: Sci. Instrum. 13, 427 (1980).CrossRefGoogle Scholar
  48. 48.
    C. Wivel and S. M¢rup, J. Phys. E: Sci. Instrum. 14, 605 (1981).CrossRefGoogle Scholar
  49. 49.
    H. Keller, J. Appl. Phys. 52, 5268 (1981).CrossRefGoogle Scholar
  50. 50.
    A.H. Muir, Jr., in Mrissbauer Effect Methodology, I.J. Gruverman, ed., Vol. 4, Plenum Press, New York, 1968, p. 75.Google Scholar
  51. 51.
    S.K. Silber, R.A. Deans, and R.A. Geanangel, Computers and Chemistry, 4, 123 (1980).CrossRefGoogle Scholar
  52. 52.
    T. Mukoyama, Nucl. Instrum. Methods 125, 289 (1975).CrossRefGoogle Scholar
  53. 53.
    T. Mukoyama, Nucl. Instrum. Methods 126, 153 (1975).CrossRefGoogle Scholar
  54. T. Mukoyama and J. Vegh, Nucl. Instrum. Methods 173, 345 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Geoffrey Longworth
    • 1
  1. 1.Nuclear Physics DivisionAtomic Energy Research EstablishmentHarwell, Didcot, OxfordshireEngland

Personalised recommendations