Skip to main content

Part of the book series: Modern Inorganic Chemistry ((MICE,volume 1))

Abstract

A Mössbauer spectrum is a record of the rate of resonant interactions taking place in the specimen as a function of energy. The occurrence of the interactions may be detected by the absorption of γ rays from the beam, in which case we have a transmission spectrum, or by the detection of the decay products, such as γ rays, x rays, or conversion electrons of the excited nucleus, in which case we have a “backscatter” spectrum. A Mössbauer spectrometer is an instrument for obtaining the spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.St.P. Bunbury, J. Sci. Inst. 43, 783 (1966).

    Article  CAS  Google Scholar 

  2. E. Kankeleit, Mössbauer Effect Methodology, Vol. 1, I. Gruverman, ed., Plenum Press, New York, 1965, p. 477.

    Google Scholar 

  3. T.E. Cranshaw, J. Phys. E: Sci. Instrum. 9, 10 (1974).

    Google Scholar 

  4. T.E. Cranshaw, UKAEA report, AERE R-10207 (1981).

    Google Scholar 

  5. G.M. Kalvius and E. Kankeleit, Mrissbauer Spectroscopy and its Applications, IAEA, Vienna, 1972, p. 9.

    Google Scholar 

  6. N. Haider and G.M. Kalvius, Nucl. Instrum. Methods 108, 165 (1973).

    Google Scholar 

  7. T.E. Cranshaw, UKAEA report, AERE R-10206 (1981).

    Google Scholar 

  8. M.A. Player and F.W.D. Woodhams, J. Phys. E: Sci. Instrum. 11, 191 (1978).

    Article  CAS  Google Scholar 

  9. P.E. Holbourn, M.A. Player, and F.W.D. Woodhams, Nucl. Instrum. Methods 165, 119 (1979).

    Article  Google Scholar 

  10. B. Window, B.L. Dickson, P. Routcliffe, and K.K.P. Srivastava, J. Phys. E: Sci. Instrum. 7, 916 (1974).

    Article  Google Scholar 

  11. G.J. Perlow, Perspectives in Mössbauer Spectroscopy, Plenum Press, New York, 1973, p. 221.

    Book  Google Scholar 

  12. P. Helisto, T. Katila, W. Potzel, and K. Riski, Phys. Lett. 85a, 177 (1981).

    Article  Google Scholar 

  13. G.J. Long, T.E. Cranshaw, and G. Longworth, Mössbauer Effect Reference and Data Journal, 6, 42 (1983).

    Google Scholar 

  14. D. West, Prog. Nucl. Phys. 3, 18 (1953).

    Google Scholar 

  15. M.J. Tricker, Mössbauer Spectroscopy and its Chemical Applications, J.G. Stevens and G.K. Shenoy, eds., American Chemical Society, Washington, D.C., 1981, p. 63.

    Google Scholar 

  16. G.P. Huffman, Nucl. Instrum. Methods 137, 267 (1976).

    Article  CAS  Google Scholar 

  17. G.P. Huffman and H.H. Podgurski, Oxid. Met. 10, 37 (1976).

    Article  Google Scholar 

  18. M.J. Graham, D.F. Mitchell, and D.A. Channing, Oxid. Met. 10, 377 (1976).

    Article  Google Scholar 

  19. D. Liljequist, Scanning Electron Microscopy, Ill, S.E.M., Inc., Illinois, pp. 997–1017 (1983).

    Google Scholar 

  20. D. Liljequist, T. Ekdahl, and U. Baverstam, Noel. Instrum. Methods 155, 529 (1978).

    Article  CAS  Google Scholar 

  21. O. Massenet, Nucl. Instrum. Methods 153, 419 (1978).

    Article  CAS  Google Scholar 

  22. J.A. Sawicki, T. Tyliszczak, and O. Growski, Nucl. Instrum. Methods 190, 433 (1981).

    Article  CAS  Google Scholar 

  23. R. Atkinson and T.E. Cranshaw, Nucl. Instrum. Methods 204, 577 (1983).

    Article  CAS  Google Scholar 

  24. J.G. Stevens, Mlissbauer Effect Reference and Data Journal, J.G. Stevens, V.E. Stevens, R.M. White and J.L. Gibson, eds., Mössbauer Effect Data Center, North Carolina, Vol. 3, No. 4, p. 99 (1980).

    Google Scholar 

  25. S. Ruby and D.I. Bolef, Phys. Rev. Lett. 5, 5 (1960).

    Article  Google Scholar 

  26. T.E. Cranshaw and P. Reivari, Proc. Phys. Soc. 90, 1059 (1967).

    Article  CAS  Google Scholar 

  27. H. deWaard, Rev. Sci. Instrum. 36, 1728 (1965).

    Article  CAS  Google Scholar 

  28. H.P. Wit, Rev. Sci. Instrum. 46, 927 (1975).

    Article  CAS  Google Scholar 

  29. J.P. Biscar, W. Kundig, H. Bommel, and R.S. Hargrove, Nucl. Instrum. Methods 75, 165 (1969).

    Article  Google Scholar 

  30. J. Cosgrove and R.L. Collins, Nucl. Instrum. Methods 95, 269 (1971).

    Article  CAS  Google Scholar 

  31. T.E. Cranshaw, J. Phys. E: Sci. Instrum. 6, 1053 (1973).

    Article  Google Scholar 

  32. M.A. Player and F.W.D. Woodhams, J. Phys. E: Sci. Instrum. 9, 1148 (1976).

    Article  Google Scholar 

  33. G. Longworth and R. Atkinson, Mössbauer Spectroscopy and its Chemical Applications, J.G. Stevens and G.K. Shenoy, eds., American Chemical Society, Washington, D.C., 1981, p. 101.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cranshaw, T.E. (1984). Mössbauer Spectrometers and Calibration. In: Long, G.J. (eds) Mössbauer Spectroscopy Applied to Inorganic Chemistry. Modern Inorganic Chemistry, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0462-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0462-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0464-5

  • Online ISBN: 978-1-4899-0462-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics