Applications to Biological Systems

  • D. P. E. Dickson
Chapter
Part of the Modern Inorganic Chemistry book series (MICE, volume 1)

Abstract

Mössbauer spectroscopy has important applications in the study of biological systems. These mainly result from the crucial role of the element iron in certain biomolecules. While there have been some investigations of biological systems using isotopes other than 57Fe, these constitute a very small fraction of the work done up to now, although there are a number of interesting possibilities in this area.

Keywords

Mossbauer Spectroscopy Iron Atom Quadrupole Splitting Hyperfine Field Heme Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Lang, Quart. Rev. Biophys. 3, 1 (1970).Google Scholar
  2. 2.
    K. Spartalian and G. Lang, in: Applications of Mössbauer Spectroscopy, R.L. Cohen, ed., Vol. 2, p. 249, Academic Press, New York, 1980.Google Scholar
  3. 3.
    G. Lang and W. Marshall, Proc. Phys. Soc. 87, 3 (1966).CrossRefGoogle Scholar
  4. 4.
    R.F. Kirchner and G.H. Loew, J. Am. Chem. Soc. 99, 4639 (1977).CrossRefGoogle Scholar
  5. 5.
    L. Pauling, Proc. Natl. Acad. Sci. USA. 74, 2612 (1977).CrossRefGoogle Scholar
  6. 6.
    L. Cianchi, M. Mancini, and G. Spina, Lett. Nuovo Cimento 16, 505 (1976).CrossRefGoogle Scholar
  7. 7.
    M. Cerdonio, A. Congiu-Castellano, F. Mogno, B. Pispisa, G.L. Romani, and S. Vitale, Proc. Natl. Acad. Sci. USA 74, 398 (1977).CrossRefGoogle Scholar
  8. 8.
    M. Cerdonio, A. Congiu-Castellano, L. Calabrese, S. Morante, B. Pispisa, and S. Vitale, Proc. Natl. Acad. Sci. USA. 75, 4916 (1978).CrossRefGoogle Scholar
  9. 9.
    M.F. Perutz, J.E. Ladner, S.R. Simor, and C. Ho, Biochemistry 13, 2163 (1974).CrossRefGoogle Scholar
  10. 10.
    P.M. Champion, J.D. Lipscomb, E. Münck, P.G. Debrunner, and I.C. Gunsalus, Biochemistry 14, 4151 (1975).CrossRefGoogle Scholar
  11. 11.
    P.M. Champion, R. Chiang, E. Münck, P.G. Debrunner, and L.P. Hager, Biochemistry 14, 4159 (1975).CrossRefGoogle Scholar
  12. 12.
    T.A. Kent, K. Spartalian, G. Lang, T. Yonetani, C.A. Reed, and J.P. Collman, Biochitn. Biophys. Acta 580, 245 (1979).CrossRefGoogle Scholar
  13. 13.
    T.S. Srivastava, S. Tyagi, and A. Nath, Proc. Natl. Acad. Sci. USA. 74, 4996 (1977).CrossRefGoogle Scholar
  14. 14.
    G.C. Papaefthymiou, B.H. Huynh, C.S. Yen, J.L. Groves, and C.S. Wu, J. Chem. Phys. 62, 2995 (1975).CrossRefGoogle Scholar
  15. 15.
    Y.W. Chow and A. Mukerji, Biochem. Biophys. Res. Commun. 62, 989 (1975).CrossRefGoogle Scholar
  16. 16.
    A. Trautwein, Y. Alpert, Y. Maeda, and H.E. Marcolin, J. Phys. (Paris) 37, C6–191 (1976).Google Scholar
  17. 17.
    U.F. Thomanek, F. Parak, and B. Wintergerst, Z. Naturforsch. 32c, 11 (1977).Google Scholar
  18. 18.
    G. Lang, K. Spartalian, and T. Yonetani, Biochim. Biophys. Acta 451, 250 (1976).CrossRefGoogle Scholar
  19. 19.
    T. Harami, Y. Maeda, Y. Morita, A. Trautwein, and U. Gonser, J. Chem. Phys. 67, 1164 (1977).CrossRefGoogle Scholar
  20. 20.
    C.E. Schulz, R. Chiang, and P.G. Debrunner, J. Phys. (Paris) 40, C2–534 (1979).CrossRefGoogle Scholar
  21. 21.
    C.E. Schulz, P.W. Devaney, H. Winkler, P.G. Debrunner, N. Doan, R. Chiang, R. Rutter, and L.P. Hager, FEBS Lett. 103, 102 (1979).CrossRefGoogle Scholar
  22. 22.
    D. Dolphin, J.R. Sams, T.B. Tsin, and K.L. Wong, J. Am. Chem. Soc. 98, 6970 (1976).CrossRefGoogle Scholar
  23. 23.
    G. Lang, K. Spartalian, C.A. Reed, and J.P. Coltman, J. Chem. Phys. 69, 5424 (1978).CrossRefGoogle Scholar
  24. 24.
    D.A. Summerville, I.A. Cohen, K. Hatano, and W.R. Scheidt, Inorg. Chem. 17, 2906 (1978).CrossRefGoogle Scholar
  25. 25.
    D.H. Dolphin, J.R. Sams, and T.B. Tsin, Inorg. Chem. 16, 711 (1977).CrossRefGoogle Scholar
  26. 26.
    M.M. Maltempo, T.H. Moss, and K. Spartalian, J. Chem. Phys. 73, 2100 (1980).CrossRefGoogle Scholar
  27. 27.
    M.J. Gunter, L.N. Mander, G.M. McLaughlin, K.S. Murray, K.H. Berry, P.E. Clark, and D.A. Buckingham, J. Am. Chem. Soc. 102, 1470 (1980).CrossRefGoogle Scholar
  28. 28.
    W. Lovenberg (ed.), Iron—Sulfur Proteins, Vols. 1 and 2 (1974) Vol. 3 (1977), Academic Press, New York.Google Scholar
  29. 29.
    R. Cammack, Nature 286, 422 (1980).CrossRefGoogle Scholar
  30. 30.
    R. Cammack, D.P.E. Dickson, and C.E. Johnson, in Iron—Sulfur Proteins, W. Lovenberg, ed., Vol. 3, p. 319, Academic Press, New York, 1977.Google Scholar
  31. 31.
    R.H. Sands and W.R. Dunham, Quart. Rev. Biophys. 7, 443 (1974).CrossRefGoogle Scholar
  32. 32.
    K.K. Rao, M.C.W. Evans, R. Cammack, D.O. Hall, C.L. Thompson, P.J. Jackson, and C.E. Johnson, Biochem. J. 122, 257 (1971).Google Scholar
  33. 33.
    C.E. Johnson, J. Phys. (Paris) 35, C1–57 (1974).Google Scholar
  34. 34.
    C.E. Johnson, J. Appt. Phys. 42, 1325 (1971).CrossRefGoogle Scholar
  35. 35.
    W.R. Dunham, A.J. Bearden, I.T. Salmeen, G. Palmer, R.H. Sands, W.H. Orme-Johnson, and H. Beinert, Biochim. Biophys. Acta 253, 134 (1971).CrossRefGoogle Scholar
  36. 36.
    B.H. Huynh, J.J.G. Moura, I. Moura, T.A. Kent, J. LeGall, A.V. Xavier, and E. Münck, J. Biol. Chem. 225, 3242 (1980).Google Scholar
  37. 37.
    M.H. Emptage, T.A. Kent, B.H. Huynh, J. Rawlings, W.H. Orme-Johnson, and E. Münck, J. Biol. Chem. 225, 1793 (1980).Google Scholar
  38. 38.
    J.J.G. Moura, I. Moura, T.A. Kent, J.D. Lipscomb, B.H. Huynh, J. LeGall, A.V. Xavier, and E. Münck, J. Biol. Chem. 257, 6259 (1982).Google Scholar
  39. 39.
    T.A. Kent, J-L. Dreyer, M.C. Kennedy, B.H. Huynh, M.H. Emptage, H. Beinert, and E. Münck, Proc. Natl. Acad. Sci. USA 79, 1096 (1982).CrossRefGoogle Scholar
  40. 40.
    S.H. Bell, D.P.E. Dickson, C.E. Johnson, R. Cammack, D.O. Hall, and K.K. Rao, FEBS Lett. 142, 143 (1982).CrossRefGoogle Scholar
  41. 41.
    C.W. Carter, in: Iron—Sulfur Proteins, W. Lovenberg, ed., Vol. III, p. 158, Academic Press, New York, 1977.Google Scholar
  42. 42.
    D.P.E. Dickson and C.E. Johnson, in Structural and Resonance Techniques in Biological Research,D.L. Rousseau, ed., in press.Google Scholar
  43. 43.
    P. Middleton, D.P.E. Dickson, C.E. Johnson, and J.D. Rush, Eur. J. Biochem. 104, 289 (1980).CrossRefGoogle Scholar
  44. 44.
    P. Middleton, D.P.E. Dickson, C.E. Johnson, and J.D. Rush, Eur. J. Biochem. 88, 135 (1978).CrossRefGoogle Scholar
  45. 45.
    D.P.E. Dickson, C.E. Johnson, C.L. Thompson, R. Cammack, M.C.W. Evans, D.O. Hall, K.K. Rao, and U. Weser, J. Phys. (Paris) 35, C6–343 (1974).CrossRefGoogle Scholar
  46. 46.
    K. Gersonde, H.E. Schlaak, M. Breitenbach, F. Parak, H. Eicher, W. Zgorzalla, G.M. Kalvius, and A. Mayer, Eur. J. Biochem. 43, 307 (1974).CrossRefGoogle Scholar
  47. 47.
    W.T. Oosterhuis and K. Spartalian, in Applications of Mössbauer Spectroscopy, R.L. Cohen, ed., Vol. 1, p. 141, Academic Press, New York, 1976.Google Scholar
  48. 48.
    C.P. Tsang, L. Bogner, and A.J.F. Boyle, J. Chem. Phys. 65, 4584 (1976).CrossRefGoogle Scholar
  49. 49.
    P. Aisen, G. Lang, and R. Woodworth, J. Biol. Chem., 248, 649 (1973).Google Scholar
  50. 50.
    J.F. Boas and B. Window, Aust. J. Phys. 19, 573 (1966).CrossRefGoogle Scholar
  51. 51.
    K. Spartalian, W.T. Oosterhuis, and N. Smarra, Biochim. Biophys. Acta 399, 203 (1975).CrossRefGoogle Scholar
  52. 52.
    J.M. Williams, D.P. Danson, and C. Janot, Phys. Med. Biol. 23, 835 (1978).CrossRefGoogle Scholar
  53. 53.
    D.P.E. Dickson and S. Rottem, Eur. J. Biochem. 101, 291 (1979).CrossRefGoogle Scholar
  54. 54.
    E.R. Bauminger, S.G. Cohen, F. Labenski de Kanter, A. Levy, S. Ofer, M. Kessel, and S. Rottem, J. Bacteriol. 80, 378 (1980).Google Scholar
  55. E.R. Bauminger, S.G. Cohen, D.P.E. Dickson, A. Levy, S. Ofer and J. Yariv, Biochim. Biophys. Acta 623, 237 (1980).CrossRefGoogle Scholar
  56. 55.
    C. Kellershohn, C. Audebert, D. Fortier, J.N. Rimbert, and C. Hubert, Rev. Phys. Appl. 15, 1175 (1980).CrossRefGoogle Scholar
  57. 56.
    S. Ofer, G.C. Papaefthymiou, R.B. Frankel, and H.A. Lowenstam, Biochim. Biophys. Acta. 676, 199 (1981).CrossRefGoogle Scholar
  58. 57.
    J.L. Groves, M.J. Potasek, and G. De Pasquali, Phys. Lett. 42A, 493, (1973).CrossRefGoogle Scholar
  59. 58.
    L.W. Oberley and J.C. Erhardt, J. Chem. Phys. 63, 2329 (1975).CrossRefGoogle Scholar
  60. 59.
    L.W. Oberley, V. Herskowitz, and J.C. Erhardt, Phys. Lett. 50A, 77, (1974).CrossRefGoogle Scholar
  61. 60.
    H. Haffner, A. Andl, H. Appel, G. Bache, K.C. Holmes, and S. Morris, J. Phys. (Paris) 37, C6–223 (1976).CrossRefGoogle Scholar
  62. 61.
    A. Andl, H. Appel, G. Büche, H. Haffner, and P. Wittek, Hyperfine Interactions 10, 1069 (1981).CrossRefGoogle Scholar
  63. 62.
    A. Nath, M. Harpold, M.P. Klein, and W. Kündig, Chem. Phys. Lett. 2, 471 (1968).CrossRefGoogle Scholar
  64. 63.
    K. Inoue and A. Nath, Bioinorg. Chem. 7, 159 (1977).CrossRefGoogle Scholar
  65. 64.
    M. Katada, S. Tyagi, D.S. Rajoria, and A. Nath, in Porphyrin Chemistry Advances, F.R. Longo, ed., p. I57, Ann Arbor Service Publishers Inc., Ann Arbor, Michigan, 1979.Google Scholar
  66. 65.
    M. Kelly and G. Lang, Biochim. Biophys. Acta 233, 86 (1970).Google Scholar
  67. 66.
    B.E. Smith and G. Lang, Biochem. J. 137, 169 (1974).Google Scholar
  68. 67.
    B.E. Smith, M.J. O’Donnell, G. Lang, and K. Spartalian, Biochem. J. 191, 449 (1980).Google Scholar
  69. 68.
    E. Münck, H. Rhodes, W.H. Orme-Johnson, L.C. David, W.J. Brill, and V.K. Shah, Biochim. Biophys. Acta 400, 32 (1975).CrossRefGoogle Scholar
  70. 69.
    B.H. Huynh, E. Münck, and W.H. Orme-Johnson, Biochim. Biophys. Acta, 579, 192 (1979).Google Scholar
  71. 70.
    R.H. Tieckelmann, H.C. Silvis, T.A. Kent, B.H. Huynh, J.V. Waszczak, B.K. Teo, and B.A. Averill, J. Am. Chem. Soc. 102, 5550 (1980).CrossRefGoogle Scholar
  72. 71.
    D. Coucouvanis, W.C. Baenzinger, E.D. Simhon, P. Stremple, D. Swenson, A. Simopoulos, A. Kostikas, V. Petrouleas, and V. Papaefthymiou, J. Am. Chem. Soc. 102, 1730 (1980).CrossRefGoogle Scholar
  73. 72.
    T.E. Wolff, J.M. Berg, C. Warrick, K.O. Hodgson, R.H. Holm, and R.B. Frankel, J. Am. Chem. Soc. 100, 4630 (1978).CrossRefGoogle Scholar
  74. 73.
    G. Christou, C.D. Garner, T.J. King, C.E. Johnson, and J.D. Rush, J. Chem Soc. Chem. Commun. 503 (1979).Google Scholar
  75. 74.
    P.J. Geary and D.P.E. Dickson, Biochem. J. 195, 99 (1981).Google Scholar
  76. 75.
    E. Bill, F.H. Bernhardt, and A.X. Trautwein, Eur. J. Biochem. 121, 39 (1981).CrossRefGoogle Scholar
  77. 76.
    L. Que, J.D. Lipscomb, R. Zimmermann, E. Münck, N.R. Orme-Johnson, and W.H. Orme-Johnson, Biochim. Biophys. Acta 452, 320 (1976).CrossRefGoogle Scholar
  78. 77.
    R. Zimmermann B.H. Huynh, E. Münck, and J.D. Lipscomb, J. Chem. Phys. 69, 5453 (1978).Google Scholar
  79. 78.
    S.H. Bell, D.P.E. Dickson, R. Rieder, R. Cammack. D.S. Pautil, D.O. Hall, and K.K. Rao, Eur. J. Biochem. in press.Google Scholar
  80. 79.
    M.P. Sharrock, thesis, University of Illinois, Urbana, Illinois (1973), unpublished.Google Scholar
  81. 80.
    P.G. Debrunner, C.E. Schulz, G. Feher, and M.Y. Okamura, Biophys. J. 15, 226a (1975).Google Scholar
  82. 81.
    B. Boso, P.G. Debrunner, M.Y. Okamura, and G. Feher, Biochim. Biophys. Acta 638, 173 (1981).CrossRefGoogle Scholar
  83. 82.
    E.H. Evans, N.G. Carr, J.D. Rush, and C.E. Johnson, Biochem. J. 166, 547 (1977).Google Scholar
  84. 83.
    E.H. Evans, J.D. Rush. C.E. Johnson, and M.C.W. Evans, Biochem. J. 182, 861 (1979).Google Scholar
  85. 84.
    E.H. Evans, D.P.E. Dickson, C.E. Johnson, J.D. Rush, and M.C.W. Evans, Eur. J. Biochem. 118, 81 (1981).CrossRefGoogle Scholar
  86. 85.
    C. Kellershohn, J.N. Rimbert, A. Chevalier, and C. Hubert, J. Phys. (Paris) 37, C6185 (1976).CrossRefGoogle Scholar
  87. 86.
    K.H. Winterhalter, E.E. Dilorio, J.G. Beetlestone, J.B. Kushimo, H. Uebelhack, H. Eicher, and A. Mayer, J. Mol. Biol. 70, 665 (1972).CrossRefGoogle Scholar
  88. 87.
    Y.W. Chow, J.F. Bertles, R.H. Howes, G.C. Papaefthymiou, P.H. Swerdlow. C.S. Yen, and C.S. Wu, Bull. Am. Phys. Soc. 16, 641 (1971).Google Scholar
  89. 88.
    C.S. Yen, J.L. Groves, G.C. Papaefthymious, B.H. Huynh, P.H. Swerdlow, and C.S. Wu, Bull. Am. Phys. Soc. 18, 670 (1973).Google Scholar
  90. 89.
    E.R. Bauminger, S.G. Cohen, S. Ofer, and E.A. Rachmilewitz, Proc. Natl. Acad. Sci. USA 76, 939, (1979).CrossRefGoogle Scholar
  91. 90.
    E.R. Bauminger and S. Ofer, Proc. Ind. Natl. Sci. Acad.: International Conference on the Applications of the Mössbauer Effect, 61 (1982).Google Scholar
  92. 91.
    A. Jacobs, S.W. Peters, E.R. Bauminger, J. Eikelboom, S. Ofer, and E.A. Rachmilewitz, Brit. J. Haematol. 49, 201 (1981).CrossRefGoogle Scholar
  93. 92.
    K.S. Kaufman, G.C. Papaefthymiou, R.B. Frankel, and A. Rosenthal, Biochim. Biophys. Acta 629, 522 (1980).CrossRefGoogle Scholar
  94. 93.
    J.D. Rush, D.P.E. Dickson, C.E. Johnson. P.J. Hewitt, and H.F. Lam, Phys. Med. Biol. 20, 128 (1975).CrossRefGoogle Scholar
  95. 94.
    C.E. Johnson, Phys. Today 24, 35 (1971).CrossRefGoogle Scholar
  96. 95.
    L. Guest, Ann. Occup. Hyg. 19, 49 (1976).CrossRefGoogle Scholar
  97. 96.
    L. Guest, Ann. Occup. Hyg. 21, 151 (1978).CrossRefGoogle Scholar
  98. 97.
    J.H. Marshall, Phys. Med. Biol. 13, 15 (1968).CrossRefGoogle Scholar
  99. 98.
    C. Kellershohn, J.N. Rimbert, D. Fortier, and M. Maziere, J. Phys. (Paris) 40, C2505 (1979).CrossRefGoogle Scholar
  100. 99.
    S. Ofer, E. Fibach, M. Kessel, E.R. Bauminger, S.G. Cohen, J. Eikelboom, and E.A. Rachmilewitz, Blood 58, 255 (1981).Google Scholar
  101. 100.
    E.R. Bauminger, S.G. Cohen, E. Giberman, I. Nowik, S. Ofer, J. Yariv, M.M. Werber, and M. Mevarech, J. Phys. (Paris) 37, C6–227 (1976).Google Scholar
  102. 101.
    S.G. Cohen, E.R. Bauminger, I. Nowik, S. Ofer, and J. Yariv, Phys. Rev. Lett. 46, 1244 (1981).CrossRefGoogle Scholar
  103. 102.
    E.R. Bauminger, S.G. Cohen, I. Nowik, S. Ofer, and J. Yariv, Proc. Ind. Natl. Sci. Acad.: International Conference on the Applications of the Mössbauer Effect, 640, (1982).Google Scholar
  104. 103.
    F. Parak, E.N. Frolov, R.L. Mössbauer, and V.I. Gol’danskii, J. Mol. Biol. 145, 825 (1981).CrossRefGoogle Scholar
  105. 104.
    F. Parak, P. Finck, D. Kuchaida, and R.L. Mössbauer, Hyperfine Interactions 10, 1075 (1981).CrossRefGoogle Scholar
  106. 105.
    K.H. Mayo, F. Parak, and R.L. Mössbauer, Phys. Lett. 82A, 468 (1981).CrossRefGoogle Scholar
  107. 106.
    G.P. Singh, F. Parak, S. Hunklinger, and K. Dransfeld, Phys. Rev. Lett. 47, 685 (1981).CrossRefGoogle Scholar
  108. 107.
    Y.F. Krupyanskii, F. Parak, E.E. Gaubman, V.I. GoI’danskii, I.P. Suzdalev, and K. Hermes, Soy. Phys. JETP 52, 31 (1980).Google Scholar
  109. 108.
    Y.F. Krupyanskii, K.V. Shaitan, E.E. Gaubman, V.I. Gol’danskii, A.B. Rubin, I.P. Suzdalev, and N. Shchukin, Biofizika 26, 1037 (1981).Google Scholar
  110. 109.
    B.M. Johnstone and A.J.F. Boyle, Science 158, 389 (1967).CrossRefGoogle Scholar
  111. 110.
    B.M. Johnstone and G.K. Yates, J. Acoust. Soc. Am. 55, 584 (1974).CrossRefGoogle Scholar
  112. 1.
    l. W.S. Rhode, J. Acoust. Soc. Am. 49, 1218 (1971).CrossRefGoogle Scholar
  113. 112.
    W.S. Rhode and L. Robles, J. Acoust. Soc. Am. 55, 588 (1974).CrossRefGoogle Scholar
  114. 113.
    L. Robles, W.S. Rhode, and C.D. Geisler, J. Acoust. Soc. Am. 59, 926 (1976).CrossRefGoogle Scholar
  115. 114.
    T. Bonchev, T. Vassilev, T. Sapundzhiev, and K. Evtimov, Nature 217, 96 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • D. P. E. Dickson
    • 1
  1. 1.Department of PhysicsUniversity of LiverpoolLiverpoolEngland

Personalised recommendations