Quantum Magnetotransport Theory

  • Jànos Hajdu
Chapter
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 60)

Summary

After recalling some fundamental facts about the motion of conduction electrons in strong magnetic fields, an elementary introduction to some aspects of the quantum magnetotransport theory is given. The main subject is the presentation of a new unified approach to static and dynamic magneto-conductivity which can be understood as a very simple special case of the Mori-formalism; the lowest order correlation approximation is related to the mode-mode coupling procedure. For vanishing magnetic field and weak coupling, the new approach is equivalent to a variational solution of the Boltzmann-Bloch transport equation. Presumably something like this is also true for strong magnetic fields. In this case, however, no general (time dependent) transport equation is available.

For quantum limit fields the new approach yields simple closed formulae for the resistivity and cyclotron resonance linewidth, for both three and two dimensional systems. In spite of some drastic simplifications, the results are in qualitative agreement with experiment.

Keywords

Magnetic Field Strong Magnetic Field Quantum Limit Relaxation Spectrum Impurity Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E.N., and T.D. Holstein (1959), J. Phys. Chem. Solids 10, 254.ADSCrossRefGoogle Scholar
  2. Ando, T. (1974a), J. Phys. Soc. Japan 36, 1521.ADSCrossRefGoogle Scholar
  3. — (1974b), J. Phys. Soc. Japan 37, 622.ADSCrossRefGoogle Scholar
  4. — (1974c), J. Phys. Soc. Japan 37, 1233.ADSCrossRefGoogle Scholar
  5. — (1975), J. Phys. Soc. Japan 38, 989.ADSCrossRefGoogle Scholar
  6. — (1976), Phys. Rev. Lett. 36, 1383.ADSCrossRefGoogle Scholar
  7. Ando, T., and Y. Uemura (1974), J. Phys. Soc. Japan 36, 959.ADSCrossRefGoogle Scholar
  8. Argyres, P.N. (1958), J. Phys. Chem. Solids 4, 19.ADSCrossRefGoogle Scholar
  9. — (1960), Phys. Rev. 117, 315.MathSciNetADSMATHCrossRefGoogle Scholar
  10. Argyres, P.N., and L.M. Roth (1959), J. Phys. Chem. Solids 12, 89.MathSciNetADSCrossRefGoogle Scholar
  11. Bergers, D., and J. Hajdu (1976), Solid State Comm. 20, 683.ADSCrossRefGoogle Scholar
  12. Davydov. B., and I. Pomeranchuk (1940), J. Phys. USSR 2, 147.Google Scholar
  13. Dubinskaya, L.S. (1969), Sov. Phys. JETP 29, 436.ADSGoogle Scholar
  14. Eilenberger, G. (1963), Z. Physik 175, 445.ADSMATHCrossRefGoogle Scholar
  15. Fujita, S., and F. Mayné (1963), Physic a 29, 1201.MATHGoogle Scholar
  16. Fujita, S., and M. Prasad (1977), J. Phys. Chem. Solids 38, 1351.ADSCrossRefGoogle Scholar
  17. Gerhardts, R. (1975a), Z. Physik B22, 327.ADSGoogle Scholar
  18. — (1975b), Z. Physik B21, 275, 285.ADSGoogle Scholar
  19. — (1976), Surf. Sci. 58, 227.ADSCrossRefGoogle Scholar
  20. Gerhardts, R., and J. Hajdu (1971a), Z. Physik 245, 126.ADSCrossRefGoogle Scholar
  21. — (1971b), Solid State Comm. 9, 1607.ADSCrossRefGoogle Scholar
  22. Götze, W., and J. Hajdu (1978), J. Phys. C11, 3993.ADSGoogle Scholar
  23. — (1979), Solid State Comm. 29, 89.CrossRefGoogle Scholar
  24. Hajdu, J. (1963), Can. J. Phys. 41, 533.MathSciNetADSMATHCrossRefGoogle Scholar
  25. Hajdu, J., and H. Keiter (1967), Z. Physik 201, 507.ADSCrossRefGoogle Scholar
  26. Heuser, M., and J. Hajdu (1976), Solid State Comm. 20, 313.ADSCrossRefGoogle Scholar
  27. Keiter, H. (1967), Z. Phys. 198, 215.ADSCrossRefGoogle Scholar
  28. Kosevich, A.M., and V.V. Andreev (1960), Sov. Phys. JETP 11, 637.MATHGoogle Scholar
  29. Kossut, J., and J. Hajdu (1978), Solid State Comm. 27, 1401.ADSCrossRefGoogle Scholar
  30. Kubo, R. (1957), J. Phys. Soc. Japan 12, 570.MathSciNetADSCrossRefGoogle Scholar
  31. Kubo, R., Miyake, S.I., and N. Hashitsume (1965), Solid State Phys. (Ed. Seitz, F., and D. Turnbull) 17, 269 (New York: Academic Press)Google Scholar
  32. McComb, B.D., Kaplan, R., Wagner, R.J., Gornik, E., and W. Müller (1976), Phys. Rev. B13, 2536.ADSGoogle Scholar
  33. Peierls, R. (1933), Z. Physik 80, 763.ADSCrossRefGoogle Scholar
  34. Prasad, M., and S. Fujita (1977a), Solid State Comm. 21, 1105.ADSCrossRefGoogle Scholar
  35. — (1977b), Solid State Comm. 23, 551.ADSCrossRefGoogle Scholar
  36. Prasad, M., Srinivas, T.K., and S. Fujita (1977), Solid State Comm. 24, 439.ADSCrossRefGoogle Scholar
  37. Schnakenberg, J. (1963), Z. Phys. 171, 199.ADSMATHCrossRefGoogle Scholar
  38. Shin, E.E.H., Argyres, P.N., and B. Lax (1973), Phys. Rev. B7, 3572.ADSGoogle Scholar
  39. Ting, C.S., Ying, S.C., and J.J. Quinn (1976), Phys. Rev. Lett. 37, 215.ADSCrossRefGoogle Scholar
  40. Titeica, S.(1935), Ann. Phys. (5), 22, 129.Google Scholar
  41. Zubarev, D.N. (1960), Sov. Phys. Uspekhi 3, 320.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Jànos Hajdu
    • 1
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKöln 41Germany

Personalised recommendations