Low Frequency Responses of Condensed Matter

  • K. L. Ngai
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 60)


The lectures I shall give here will be based on recent works that I have been involved in during the last three years. These works have been the source of a number of articles in the literature. All of these are concerned with low frequency fluctuation, relaxation and dissipation phenomena of condensed matter. They include a collection of perhaps the oldest problems in condensed matter physics that have eluded satisfactory solutions. What I have done as the title suggests is to give a fundamental theoretical model based on new concepts that can successfully account for a host of these low frequency fluctuation, relaxation and dissipation phenomena. In this way, I have given them a unified physical description. Furthermore, I have made a rather comprehensive survey of experimental data, and extensive comparisons with the predictions of my universal theory. The function of this universal theory is not only to provide a unified physical basis for the low frequency properties but also to resolve the impasse in the interpretations of experimental data of several active research areas in solid-state physics today.


Apparent Activation Energy Correlate State Dielectric Response Deep Level Transient Spectroscopy Loss Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Debye, Polar Molecules, Dover, New York (1945).Google Scholar
  2. 2.
    For a review of the subject see C.J.F. Bottcher and P. Bordewijk, Theory of Electric Polarization, Vol. II (Elsevier, 1978).Google Scholar
  3. 3.
    K.S. Cole and R.H. Cole, J. Chem. Phys. 9, 34 (1941).CrossRefGoogle Scholar
  4. 4.
    D.W. Davidson and R.H. Cole, J. Chem. Phys. 19, 1484 (1951)ADSCrossRefGoogle Scholar
  5. S. Havriliak and S. Negami, J. Polym. Sci. C14, 99 (1966).Google Scholar
  6. 5.
    A.K. Jonscher, Nature 267, 673 (1977).ADSCrossRefGoogle Scholar
  7. 6.
    J. Curie, Ann. Chim. Phys. 6 17, 385 (1888); 6 18, 203 (1889)Google Scholar
  8. E. von Schweidler, Ann. d. Physik 24, 711 (1907).ADSCrossRefGoogle Scholar
  9. 7.
    K.L. Ngai, Bull. Am. Phys. Soc. 24, 284 (1979)Google Scholar
  10. K. L. Ngai and B. W. Henvis, Naval Research Laboratory, Memorandum Report 1979 and to be published.Google Scholar
  11. 8.
    K.L. Ngai and C.T. White, Naval Research Laboratory Memorandum Report (1978), Bull. Am. Phys. Soc. 24, 465 (1979).Google Scholar
  12. 9.
    K.L. Ngai, A.K. Jonscher and C.T. White, Nature 277, 185 (1979).ADSCrossRefGoogle Scholar
  13. 10.
    E.P. Wigner, Gatlinberg Conf. on Neutron Physics, Oak Ridge National Lab Report No. ORNL-2309, p. 59.Google Scholar
  14. 11.
    For a review and complete references see M.L. Mehta, Random Matrices, Academic Press, N.Y., 1967.Google Scholar
  15. 12.
    J.B. Garg, J. Rainwater, J.S. Petersen and W.W. Havens, Jr., Phys. Rev. 134, B985 (1964).ADSCrossRefGoogle Scholar
  16. 13.
    F.J. Dyson, J. Matt. Phys. 3, 140 (1962); ibid., p. 157; ibid., p. 166; ibid., p. 1191; ibid., p. 1199.MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 14.
    P.W. Anderson, Phys. Rev. Lett. 34, 853 (1975).ADSGoogle Scholar
  18. 15.
    K.L. Ngai and C.T. White, J. Vac. Sci. Tech. 15, 1389 (1978).ADSCrossRefGoogle Scholar
  19. 16.
    C.T. White and K.L. Ngai, Surf. Sci. 73, 116 (1978)ADSCrossRefGoogle Scholar
  20. K. L. Ngai and C.T. White, Surf. Sci. 73 31 (1978).ADSCrossRefGoogle Scholar
  21. 17.
    C.T. White and K.L. Ngai, J. Vac. Sci. Tech. July Issue, 1979; and K.L. Ngai and C.T. White, J. Appl. Phys. to appear.Google Scholar
  22. 18.
    P.W. Anderson, B.I. Halperin and C.M. Varma, Philos. Mag. 25, 1 (1972)ADSzbMATHCrossRefGoogle Scholar
  23. W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).ADSCrossRefGoogle Scholar
  24. 19.
    G.D. Mahan, Solid State Physics, 29, 75 (1974)CrossRefGoogle Scholar
  25. J. J. Hopfield, Comment Solid State Phys., 11, 40 (1969).Google Scholar
  26. 20.
    D. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, N.Y., 1974).Google Scholar
  27. 21.
    G. Williams and D.C. Watts, Trans. Faraday Soc. 66, 80 (1970).CrossRefGoogle Scholar
  28. 22.
    H.B. Callen and T.A. Welton, Phys. Rev. 83, 34 (1951).MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 23.
    R. Balescu, Equilibrium and Non-equilibrium Statistical Mechanics (Wiley-Interscience, 1975), p. 663 ff.Google Scholar
  30. 24.
    G. Pfister and H. Scher, Phys. Rev. B 15, 2062 (1977).ADSCrossRefGoogle Scholar
  31. 25.
    F.B. McLean, H.E. Boesch, Jr. and M. McGarrity, IEEE Trans. Nucl. Sci. NS-23, 1506 (1976).ADSCrossRefGoogle Scholar
  32. 26.
    R.C. Hughes, Phys. Rev. B 15, 2012 (1977)ADSCrossRefGoogle Scholar
  33. R.C. Hughes and D. Emin, Proceedings of Intl. Conf. on The Physics of SiO 2 and its Interfaces, edited by S. Pantelides (Pergamon, 1978), p. 14.Google Scholar
  34. 27.
    W. Fuhs, M. Milleville and J. Stuke, Phys. Stat. Sol. (b) 89, 495 (1978)ADSCrossRefGoogle Scholar
  35. T. Tiedje, B. Abeles, D. Morel and C.R. Wronski, Bull. Amer. Phys. Soc. 24, 400 (1979).Google Scholar
  36. 28.
    H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975).ADSCrossRefGoogle Scholar
  37. 29.
    K.L. Ngai, to appear in Proceedings of International Conf. on the Physics of Se and Te, Konigstein, Germany (1979), Springer-Verlag.Google Scholar
  38. 30.
    C.H. Seager and R.K. Quinn, J. Non-Cryst. Solids 17, 386 (1975).ADSCrossRefGoogle Scholar
  39. 31.
    G. Pfister, K.S. Liang, M. Morgan, P.C. Taylor, E.J. Friebele and S.G. Bishop, Phys. Rev. Lett. 41, 1318 (1978).ADSCrossRefGoogle Scholar
  40. 32.
    D. Emin, Adv. Phys. 24, 305 (1975).ADSCrossRefGoogle Scholar
  41. 33.
    K.L. Ngai and P.C. Taylor (to be published).Google Scholar
  42. 34.
    T.D. Moustaka, J. Electronic Mat. 8, 391 (1979)ADSCrossRefGoogle Scholar
  43. W. Beyer, R. Fischer and H. Overhof, Phil. Mag., to appear.Google Scholar
  44. 35.
    R. Williams, J. Appl. Phys. 37, 3411 (1966).ADSCrossRefGoogle Scholar
  45. 36.
    D.V. Lang, J. Appl. Phys. 45, 3014 (1974).ADSCrossRefGoogle Scholar
  46. 37.
    D.V. Lang and R.A. Logan, J. Electronic Mat. 4, 1053 (1975)ADSCrossRefGoogle Scholar
  47. G. M. Martin, A. Mitonneau and A. Mircea, Electronics Lett. 13, 191 (1977).CrossRefGoogle Scholar
  48. 38.
    A. Mayerfeld and P.K. Bhattacharja, Appl. Phys. Lett. 33, 259 (1978).ADSCrossRefGoogle Scholar
  49. 39.
    A.M. White, A.J. Grant and B. Day, Electronics Lett. 14, 409 (1978).CrossRefGoogle Scholar
  50. 40.
    A.N.M.M. Choudhury, A. Mayerfeld and O. Wada, preprint.Google Scholar
  51. 41.
    See for example A. Abragam, The Principles Of Nuclear Magnetism, Oxford Univ. Press (1961).Google Scholar
  52. 42.
    N. Bloembergen, E.M. Purcell and R.V. Pound, Phys. Rev. 73, 679 (1948).ADSCrossRefGoogle Scholar
  53. 43.
    R. Lenk and J.P. Cohen-Addad, Solid State Commun. 8, 1869 (1970).ADSCrossRefGoogle Scholar
  54. 44.
    A. Van der Ziel, Fluctuation Phenomena, Academic Press, N.Y. (1959).Google Scholar
  55. 45.
    Si, P.O. Lauritzen, Solid-State Electron. 8, 41 (1965)ADSCrossRefGoogle Scholar
  56. GaAs, J.A. Copeland, IEEE Trans. ED 18, 50 (1971)CrossRefGoogle Scholar
  57. Ge, F.M. Klassen, J. Blok and H.C. Booy, Physica 27, 48 (1961).ADSCrossRefGoogle Scholar
  58. 46.
    K.L. Ngai and C.T. White, Surface Sci. 73, 31 (1978)ADSCrossRefGoogle Scholar
  59. CT. White and K.L. Ngai, Surface Sci. 73, 166 (1978).CrossRefGoogle Scholar
  60. 47.
    K.L. Ngai and C.T. White, J. Vac. Sci. Tech. 15, 4389 (1978); ibid., July issue (1979).CrossRefGoogle Scholar
  61. 48.
    K.L. Ngai and C.T. White, “A Model of Interface States and Charges of the Si-SiO2 Interface: Its Prediction and Comparison with Experiments,” J. Appl. Phys. (to appear).Google Scholar
  62. 49.
    K.L. Ngai and S. Teitler, Bull. Am. Phys. Soc. 24, 587 (1979).Google Scholar
  63. 50.
    S.T. Liu, J.D. Heaps and O.N. Tufte, Ferroelectrics 3, 281 (1972) and IEEE Trans. Sonics and ultrasonics, SU-19, 281 (1972).CrossRefGoogle Scholar
  64. 51.
    S.T. Liu, K.L. Ngai and S. Teitler, Ferroelectrics (to appear).Google Scholar
  65. 52.
    P.H. Handel, Phys. Rev. Lett. 34, 1492, 1495 (1975).ADSCrossRefGoogle Scholar
  66. 53.
    R. Kubo, Canad. J. Phys. 34, 1274 (1956).MathSciNetADSCrossRefGoogle Scholar
  67. 54.
    F.N. Hooge, Physica 83B, 14 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • K. L. Ngai
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations