Resonant Landau Level-Optical Phonon Interaction in Two-Dimensionally Confined Charge Carrier Systems

  • Anupam Madhukar
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 60)


The study of the phenomenon of resonant coupling of Landau level with the longitudinal optical phonon in a bulk semiconductor received considerable impetus with the observation1 of the anomalous magneto-optical interband absorption behavior of InSb, reported a little over a decade ago. Subsequent studies clarified various aspects of this phenomenon as it affects impurity absorption,2 cyclotron resonance3 and combined resonance.4 A systematic theoretical study5 of the phenomenon in free carrier systems has led to a classification of the relative importance of self-energy and electron-light vertex corrections. In this lecture I shall discuss certain aspects of this phenomenon in the context of the new and novel two-dimensionally confined charge carrier systems that can be made to occur in semiconductor quantum wells,6 superlattices7, 8 heterojunctions9, 10 and the metal-oxide-semiconductor systems.11 The fabrication and study12 of these systems within the recent past have opened a rather unique opportunity for the exploration of new phenomena arising from the reduced dimensionality, as well as from the special conditions that can be realized in these systems. In addition, new ramifications of established phenomena can be fruitfully employed to gain information regarding fundamental interactions unique to the system.


Phonon Mode Landau Level Inversion Layer Resonant Coupling Longitudinal Optical Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. J. Johnson and D. M. Larsen, Phys. Rev. Lett. 16, 655 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    R. Kaplan and R. F. Wallis, Phys. Rev. Lett. 20, 1499 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    D. H. Dickey, E. J. Johnson and D. M. Larsen, Phys. Rev. Lett. 18, 599 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    B. D. McCombe and R. Kaplan, Phys. Rev. Lett. 21, 756 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    K. L. Ngai, E. N. Economou and J. Ruvalds, Phys. Rev. B 6, 2506 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    R. Dingle, W. Weigman and C. H. Henry, Phys. Rev. Lett. 33, 827 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    L. L. Chang, L. Esaki, W. E. Howard, R. Ludeke and G. Schul, J. Vac. Sc. Tech. 10, 655 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    G. A. Sai Halasz, R. Tsu and L. Esaki, App. Phys. Lett. 30, 651 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    H. L. Stornier, R. Dingle, A. C. Gossard, W. Weigmann and M. D. Sturge (to be published).Google Scholar
  10. 10.
    G. Abstreiter and K. Ploog, Phys. Rev. Letts. 42, 1308 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    For the Metal-Oxide-Semiconductor system the reader is referred to the lectures presented by Dr. B. D. McCombe at this Summer Institute.Google Scholar
  12. 12.
    It is difficult to provide a comprehensive list in this area of growing activity. A reasonable account of literature published as of June 1979 and dealing with basic studies in the GaAs/A1As and InAs/GaSb systems may be found in References 13, 14 and 15.Google Scholar
  13. 13.
    A. Madhukar, N. V. Dandekar and R. N. Nucho, J. Vac. Sc. Tech. (July/August 1979 issue, in press).Google Scholar
  14. 14.
    A. Madhukar and S. Das Sarma, Surf. Science (to appear).Google Scholar
  15. 15.
    S. Das Sarma and A. Madhukar (to be published).Google Scholar
  16. 16.
    L. L. Chang, G. A. Sai-Halasz, N. J. Kawai and L. Esaki, J. Vac. Sc. Tech. (July/August 1979 issue, in press).Google Scholar
  17. 17.
    L. Esaki and L. L. Chang (private communication).Google Scholar
  18. 18.
    P. Manuel, G. A. Sai-Halasz, L. L. Chang, C. A. Chang and L. Esaki, Phys. Rev. Lett. 37, 1701 (1976).ADSCrossRefGoogle Scholar
  19. 19.
    G. A. Sai-Halasz, A. Pinczuk, P. Y. Yu and L. Esaki, Surf. Sc. 73, 232 (1978).ADSCrossRefGoogle Scholar
  20. 20.
    N. Holonyak, Jr., R. M. Kolbas, W. D. Waidig, M. Altarelli, R. D. Dupis and P. D, Dapkus, Appl. Phys. Lett. 34, 502 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    H. Fröhlich, Adv. in Phys. 31, 325 (1954).ADSCrossRefGoogle Scholar
  22. 22.
    R. M. Martin, Phys. Rev. B 4, 3676 (1971).ADSCrossRefGoogle Scholar
  23. 23.
    A. S. Barker, Jr., J. L. Merz and A. C. Gossard, Phys. Rev. B 17, 3181 (1978).ADSCrossRefGoogle Scholar
  24. 24.
    P. G. Harper, Polarons in Ionic Crystals and Semiconductors, (ed., J. T. Devreese), North-Holland (1972) and references therein.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Anupam Madhukar
    • 1
  1. 1.Departments of Physics and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations