Theory of Exciton States in Semiconductors in an Arbitrary Magnetic Field

  • N. O. Lipari
  • M. Altarelli
Chapter
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 60)

Abstract

Over the last three decades, a vast amount of theoretical and experimental investigations has been devoted to the understanding of the electronic state of solids in the presence of an external magnetic field. The magneto-spectroscopy of excitons, in particular, has often been used to provide precise information on various fundamental parameters, such as effective masses, g-values, k-linear terms, exchange interaction, etc.1 It has also become very clear that, to gain such information, realistic exciton models and their accurate solutions in the presence of an external magnetic field are necessary.2

Keywords

Exciton State Tensor Operator Valence Band Structure Diamagnetic Shift Ground State Multiplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review of excitons in a magnetic field see, for example, D. Bimberg. Advances in Solid State Physics (Pergamon-Vieweg, 1977), Vol XVII.Google Scholar
  2. 2.
    M. Altarelli and N.O. Lipari, Phys. Rev. B7, 3798 (1973).ADSGoogle Scholar
  3. 3.
    R.J. Elliot and R. Loudon, J. Phys. Chem. Solids 8, 382 (1959).ADSCrossRefGoogle Scholar
  4. 4.
    L.M. Roth, B. Lax and S. Zwerdling, Phys. Rev. 114, 90 (1959).ADSCrossRefGoogle Scholar
  5. 5.
    K. Chow, S. Suga, W. Dreybrodt and F. Willmann, Phys. Rev., 311, 1512 (1975).Google Scholar
  6. 6.
    G.J. Rees, J. Phys., C4, 2822 (1971), ibid 5, 549 (1972).ADSGoogle Scholar
  7. 7.
    N.O. Lipari and M. Altarelli, Solid Stat. Commun. 13, 1791 (1973).ADSCrossRefGoogle Scholar
  8. 8.
    K. Hess, D. Bimberg, N.O. Lipari, J.V. Fishbach and M. Altarelli, Proc. XIII Int. Conf. Phys. Semiconductors Rome, 1976, p. 142.Google Scholar
  9. 9.
    N.O. Lipari and A. Baldereschi, Phys. Rev. Letters 25, 1660 (1970)ADSCrossRefGoogle Scholar
  10. 10.
    J.O. Dimmock, in Semiconductors and Semmetal, edited by R.K. Willardson and A.C. Been (Academic, New York, 1972), Vol. 3, p. 259.Google Scholar
  11. 11.
    J.M. Luttinger, Phys. Rev. 102, 1030 (1956).ADSMATHCrossRefGoogle Scholar
  12. 12.
    K. Chow, Proc. XIV Int. Conf. Phys. Semiconductors, The Institute of Physics, London, 1979, p. 841.Google Scholar
  13. 13.
    A. Baldereschi and N.O. Lipari, Phys. Rev., B8, 2677, (1973), ibid B9, 1525 (1974).ADSGoogle Scholar
  14. 14.
    N.O. Lipari and A. Baldereschi, Sol. Stat. Commun. 25, 605 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    N.O. Lipari and M. Altarelli, to be published.Google Scholar
  16. 16.
    A. Baldereschi, this volume.Google Scholar
  17. 17.
    A.R. Edmonds, Angular Momentum in Quantum Mechanics, University Press, Princeton, N.J. 1960.Google Scholar
  18. 18.
    N.O. Lipari and M. Altarelli, Solid Stat. Commun. to be published.Google Scholar
  19. 19.
    D. Cabib, E. Fabri, and G. Fiorio Il Nuovo Cimento 10B, 185 (1972).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • N. O. Lipari
    • 1
  • M. Altarelli
    • 2
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA
  2. 2.Department of PhysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations