Photoemission from Ferromagnetic Uranium Salts

  • Mehmet Erbudak
  • Jaime Keller
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 60)


Photoelectric emission has proved to be a powerful spectro-scopic technique to investigate the electronic structure of condensed matter1. Measurement of the kinetic energy distribution curves (EDC’s) of excited electrons at a given photon energy hv gives information about the density of electronic states prior to excitation. Variations in the structure of EDC’s for different hv help one to identify different angular momentum contributions to the measured spectra2. An application to sulfides of several lanthanoid elements in the region of 20 < hv < 80 eV has revealed emission from s, p, d, and f states. In these materials anion derived s and p electrons form the bonding orbitals and show up in the spectra as 4 eV wide valence bands about 5 eV below the Fermi level, EF 3. The 5d electrons, whenever present, contribute to conduction and thus make the material, e. g., NdS, DyS, ErS, metallic; they are located at EF. In SmS and EuS the 5d states are empty and hence SmS and EuS are insulating. 4f electrons form atom-like localized states and are responsible for the magnetic properties. Since the time required for photoemission is very short (10−16 sec), even shorter than the lifetime of the ion core left behind after an electron is photoemitted, the probability of observing the 4fn ground state is rather small. Instead, the spectrum constains the multiplett-split 4fn−1 final state manifold4. It is interesting that these states can be well below EF but nevertheless only partially filled. In some cases their binding energies are smaller than that of the uncorrelated valence band and under certain circumstances these materials show valence instabilities5.


Valence Band Electron Spin Polarization Uranium Compound Exciting Photon Energy Electronic Specific Heat Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Photoemission and the Electronic Properties of Surfaces”, B. Feuerbacher, B. Fitton, and R.F. Willis, eds., John Wiley & Sons, New York (1978).Google Scholar
  2. 2.
    D.E. Eastman and M. Kuznietz, Energy Dependent Photoemission Intensities of “f” States in EuS, GdS, and US, Phys. Rev. Lett. 26: 846 (1971).ADSCrossRefGoogle Scholar
  3. 3.
    D.E. Eastman, F. Holtzberg, J. Freeouf, and M. Erbudak, Photoemission Studies of Valence Bands and 4f Multiplet Structure in NdS, SmS, EuS, GdS, DyS, and ErS, AIP Conf. Proc. 18: 1031 (1974).ADSGoogle Scholar
  4. 4.
    M. Campagna, G.K. Wertheim, and Y. Baer, Unfilled Inner Shells: Rare Earths and Their Compounds, in: “Topics in Applied Physics”, Vol. 27, L. Ley and M. Cardona, eds., Springer, Berlin (1979).Google Scholar
  5. 5.
    J.M. Robinson, Valence Transitions and Intermediate Valence States in Rare Earth and Actinide Materials, Physics Reports 51: 1 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    H.C. Siegmann, Emission of Polarized Electrons from Magnetic Materials, Physics Reports 17: 37 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    K. Sattler and H.C. Siegmann, Paramagnetic Sheet at the Surface of the Heisenberg Ferromagnet EuO, Phys. Rev. Lett. 29: 1565 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    G. Busch, M. Campagna, P. Cotti, and H.C. Siegmann, Observation of Electron Polarization in Photoemission, Phys. Rev. Lett. 22: 597 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    M. Erbudak and W. Eib, Photoemission aus UC, UN und US mit Synchrotronstrahlung, Helv. Phys. Acta 50: 147 (1977).Google Scholar
  10. 10.
    “The Actinides: Electronic Structure and Related Properties”, A.J. Freeman and J.B. Darby, Jr., eds., Academic, New York (1974).Google Scholar
  11. 11.
    E.F. Westrum, R.R. Walters, H.E. Flotow, and D.W. Osborne, Uranium Sulfide: Heat Capacity and Thermodynamic Properties from 5 to 350 K, J. Chem. Phys. 48: 155 (1968).ADSCrossRefGoogle Scholar
  12. 12.
    M.A. Kanter and C.W. Kazmierowicz, Galvanomagnetic Properties of Ferromagnetic Uranium Monosulfide, J. Appl. Phys. 35: 1053 (1964)ADSCrossRefGoogle Scholar
  13. 13.
    M. Erbudak and J. Keller, Electronic Structure of Cubic Uranium Compounds, Z. Physik B 32: 281 (1979).ADSGoogle Scholar
  14. 14.
    D.E. Eastman, J. Freeouf, and M. Erbudak, Photoemission Overviews of Valence Band Densities-of-States for Ge, GaAs, GaP, InSb, ZnSe, and CdTe Using Synchroton Radiation, J. de Physique, Suppl. C6: 37 (1973).Google Scholar
  15. 15.
    F.C. Farnoux, Etudes théorique de la variation des sections efficaces des photoionisation des atomes dans un modèle à potential central, C.R. Acad. Sci (Paris) 264 B: 1728 (1967).Google Scholar
  16. 16.
    J. Freeouf, M. Erbudak, and D.E. Eastman, Photoemission Spectra for Gold for 15 ≤ hv ≤ 90 eV and the X-ray Limit, Solid State Commun. 13: 771 (1973).ADSCrossRefGoogle Scholar
  17. 17.
    M. Erbudak, F. Greuter, F. Meier, B. Reihl, and J. Keller, Electron Spin Polarization in Uranium Sulfide, Solid State Commun. 30: 439 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    C. Herring, in: “Magnetism”, Vol. IV, G.T. Rado and H. Suhl, eds., Academic, New York (1966).Google Scholar
  19. 19.
    S.F. Alvarado, M. Erbudak, and P. Munz, Final State Effects in the 3d-Photoelectron Spectrum of Fe3O4 and Comparison with FexO, Phys. Rev. B14. 2740 (1976).ADSGoogle Scholar
  20. 20.
    J. Keller, Cluster Method Multiple Scattering Calculations of Electronic Density of States of Amorphous and Liquid Metallic Alloys, in: “Proc. III Int. Conf. Computers in Chemical Research, Education and Technology”, p. 225, E.V. Ludeña, N. Sabelli, and A.C. Wahl, eds., Plenum, New York (1977).CrossRefGoogle Scholar
  21. 21.
    J. Keller, J. Fritz, and A. Garritz, Cluster Method Multiple Scattering Calculations of Density of States of Liquid Transition Metals, Rare Earth Metals and Their Alloys, J. de Physique, Suppl. C4: 379 (1974).Google Scholar
  22. 22.
    M. Erbudak and J. Keller, Electronic and Spin Structure of UTe, Phys. Rev. Lett. 42: 115 (1979).ADSCrossRefGoogle Scholar
  23. 23.
    J. Keller and M. Erbudak, f-States in the Valence Bands of Cubic Uranium Compounds, Helv. Phys. Acta 51: 449 (1978).Google Scholar
  24. 24.
    P. Weinberger, Characterization of Energy Bands in Terms of Relativistic Local Solid State Models, Application to VC, NbC and UC, Ber. Bunsenges. Phys. Chem. 81: 804 (1977).CrossRefGoogle Scholar
  25. 25.
    W. Eib, M. Erbudak, F. Greuter, and B. Reihl, Energy Distribution and Spin Polarization of Photoelectrons from UTexSb1 x, J. Phys. C12: 1195 (1979).ADSGoogle Scholar
  26. 26.
    D.C. Tillwick and P. de V. du Plessis, A Study of Magnetic Behaviour in US Single Crystals, J. Magn. Magn. Mat. 3: 319 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Mehmet Erbudak
    • 1
  • Jaime Keller
    • 2
    • 3
  1. 1.Laboratorium für FestkörperphysikETHZZürichSwitzerland
  2. 2.Institut für Theoretische PhysikETHZZürichSwitzerland
  3. 3.Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexico

Personalised recommendations