Skip to main content

Part of the book series: Nato Advanced Study Institutes Series ((NSSB,volume 60))

  • 166 Accesses

Abstract

The simplest model of the electronic states of impurities is that of a “hydrogenic” atom with the energies scaled by the appropriate effective mass and dielectric constant. Complicated band structures are not described by the hydrogenic model but the modifications to the hydrogenic states can be calculated by effective mass theory. However there are still a number of modifications which have to be made to effective mass theory including central cell and polaron effects. Examples of the hydrogenic model, the changes brought about by complex band structures and the breakdown of effective mass theory are given with particular reference to magneto-optical experiments performed by the Oxford Semiconductor group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aleksandrov V.N., Gershenzon E.M., Zavats V.A., Melnikov A.P., Rabinovich R.I., Serebryakova N.A. and Tovmach Y.V.(1978) JETP Lect. 28 209.

    ADS  Google Scholar 

  • Bajaj K.K., Birch J.R., Eaves L., Hoult R.A., Kirkman R.F., Simmonds P.E. and Stradling R.A.(1975) J. Phys. C8 530.

    ADS  Google Scholar 

  • Berman L.V.(1976) Sov. Phys. Semicond. 10 358.

    Google Scholar 

  • Boyle W.S. and Brailsford A.D.(1957) Phys. Rev. 107 903.

    Article  ADS  Google Scholar 

  • Carter A.C., Dean P.J., Skolnick M.S. and Stradling R.A.(1977) J. Phys C10 5111.

    ADS  Google Scholar 

  • Carter A.C., Carver G.P., Nicholas R.J., Portal J.C. and Stradling R.A. (1977) Solid State Comm. 24 55.

    Article  ADS  Google Scholar 

  • Cabib D., Fabri E., Fiori G. (1971) Solid State Comm. 9, 1517.

    Article  ADS  Google Scholar 

  • Chamberlain J.M., Simmonds P.E., Stradling R.A, Bradley C.C.(1972)

    Google Scholar 

  • Solid State Comm.11 463; Proc. Int. Conf. on Phys. Semiconductors (Warsaw) 1016.

    Google Scholar 

  • Cohn D.R., Larsen D.M. and Lax B. (1970) Solid State Comm. 8 1707 (1972) Phys. Rev. B6 1361.

    Article  ADS  Google Scholar 

  • Colbrow K. (1963) Can.J. Phys. 41 1801.

    Article  ADS  Google Scholar 

  • Cooke R.A., Hoult R.A., Kirkman R.F. and Stradling R.A.(1978) J. Phys. D11 945.

    ADS  Google Scholar 

  • Cooke R.A. (1979) D. Phil Thesis (Oxford University).

    Google Scholar 

  • Falicov L.M. and Cuevas M. (1967) Phys. Rev. 164 1025.

    Article  ADS  Google Scholar 

  • Fetterman H.R., Larsen D.M., Stillman G.E., Tannenwald P.E. and Waldman J.P. (1971) Phys. Rev. Lett. 26 975.

    Article  ADS  Google Scholar 

  • Fetterman H.R., Waldman J.P., Wolfe C.M., Stillman G.E. and Parker C.D. (1972). App. Phys. Lett. 21 434.

    Article  ADS  Google Scholar 

  • Gershenzon E.M., Goltzman G.N. and Pitsyna N.G. (1977) JETP Lett. 25 539 also Sov. Phys. Uspekki 20 456.

    ADS  Google Scholar 

  • Golka J. (1975) J. Phys. C7 1407, J. Phys.C8 1443.

    Google Scholar 

  • Golka J., Trylski J., Skolnick M.S., Stradling R.A. and Couder Y. (1977). Solid State Comm. 22 623.

    Article  ADS  Google Scholar 

  • Hulme K.F. and Mullin J.B.(1962) Solid State Electronics 5 11.

    Article  Google Scholar 

  • Kaplan R., Cooke R.A. and Stradling R.A.(1978) Solid State Comm. 26 741.

    Article  ADS  Google Scholar 

  • Kirkman R.F.(1975) D. Phil Thesis (Oxford University).

    Google Scholar 

  • Kirkman R.F., Stradling R.A. and Lin-Chung P.J. (1978) J. Phys.C11 419.

    ADS  Google Scholar 

  • Kohn W. (1957) Solid State Phys.5 (Ed. Seitz and Turnbull. Ac. Press).

    Google Scholar 

  • Kuchar F., Fantner E. and Bauer G. (1974) Phys. Stat. Solidi A24 513.

    ADS  Google Scholar 

  • Kuchar F., Ramage J.C., Stradling R.A. and Lopez-Otero A., (1977) J. Phys. C10 5101.

    ADS  Google Scholar 

  • Larsen D.M. (1968) J. Phys. Chem. Solids 29 271.

    Article  ADS  Google Scholar 

  • Larsen D.M. (1970) Phys. Rev. B2 4209.

    ADS  Google Scholar 

  • Larsen D.M. (1973) Phys. Rev. B8 535 (1973).

    ADS  Google Scholar 

  • Larsen D.M. (1976) Proc. Int. Conf & Phys. Semiconductors(Rome) p1031.

    Google Scholar 

  • Larsen D.M. (1978) Proc. Conf. on the Application of High Magnetic Fields to Semiconductor Physics (Oxford).

    Google Scholar 

  • Lipari N.O. and Baldereschi A.C. (1972) Proc. Int. Conf. on Phys. Semiconductors (Warsaw) 1009.

    Google Scholar 

  • Litton C.W., Button K.J., Waldman J., Cohn D.R. and Lax B. (1976) Phys. Rev. B13 5392.

    ADS  Google Scholar 

  • Luttinger J.M., Kohn W. (1957) Phys. Rev. 97 869.

    Article  MathSciNet  ADS  Google Scholar 

  • Morgan T.N. (1968) Phys. Rev. Lett. 21 819.

    Article  ADS  Google Scholar 

  • Nicholas R.J. von Klitzing K. and Stradling R.A. (1976) Solid State Comm. 20 77.

    Article  ADS  Google Scholar 

  • Praddaude H.C. (1972) Phys. Rev. A6 1321.

    ADS  Google Scholar 

  • Scott W. (1979) J. App. Phys.50 472.

    Article  ADS  Google Scholar 

  • Simmonds P.E. (1974) D. Phil Thesis (Oxford University).

    Google Scholar 

  • Skolnick M.S., Carter A.C., Couder Y. and Stradling R.A. (1977) J. Opt. Soc. Am. 67 947.

    Article  ADS  Google Scholar 

  • Stillman G.E., Larsen D.M. and Wolfe C.M.(1971) Phys. Rev. Lett. 27 989, Solid State Comm.9 224.

    Article  ADS  Google Scholar 

  • Stillman G.E., Wolfe C.M., Korn D.M. (1972) Proc. Int. Conf on Physics of Semicond.(Warsaw) 863.

    Google Scholar 

  • Stillman G.E., Wolfe C.M. and Korn D.M. (1976) Proc. Int. Conf on Physics of Semicond. (Rome) 623.

    Google Scholar 

  • Stradling R.A., Eaves L., Hoult R.A., Miura N., Simmonds P.E. and Bradley C.C. (1972) Proc. Conf. on GaAs and Related Compounds (Boulder, Colorado) 65.

    Google Scholar 

  • Townsend P. (1978) J. Phys. C11 1481.

    ADS  Google Scholar 

  • Waldman J., Larsen D.M., Tannenwald P.E., Bradley C.C., Cohn D.R. and Lax B. (1969) Phys. Rev. Lett 23 1033.

    Article  ADS  Google Scholar 

  • Yafet Y., Keyes R.W. and Adams E.N. (1956) J. Phys. Chem. Solids 1 137.

    Article  ADS  Google Scholar 

  • Zawadski W. (1978) Proc. Conf. on Applications of High Magnetic Fields to Semiconductor Physics (Oxford) P.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Stradling, R.A. (1980). Magneto-Optical Studies of Impurities. In: Devreese, J.T. (eds) Theoretical Aspects and New Developments in Magneto-Optics. Nato Advanced Study Institutes Series, vol 60. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0454-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0454-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0456-0

  • Online ISBN: 978-1-4899-0454-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics