Advertisement

Two-Photon Absorption and Spin-Flip Raman Scattering in Small Band Gap Semiconductors

  • Carl R. Pidgeon
Chapter
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 60)

Abstract

Semiconductors are a particularly advantageous host for the observation of nonlinear optical (NLO) processes because they are transparent to photons of energy below the band gap and can still contain a relatively high carrier concentration (Wolff, 1975). Intra- and inter-band electronic transitions cause a variety of NLO processes such as Raman scattering, multiphoton mixing, two-photon absorption (TPA), optical saturation and self-focussing, all of which are associated with the third order susceptibility χ(3) In particular, these effects are strongly enhanced for semiconductors with a small energy gap and conduction band effective mass, which form the subject matter of the present work. We have recently shown that the resulting non-parabolic energy bands cause a major departure from the TPA predicted from older theories (Pidgeon et al., 1979).

Keywords

Landau Level Heavy Hole Band Difference Frequency Radiation Effective Mass Equation Zeroth Order Wave Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, R.L., Lax, B., Chase, C.E., Pidgeon, C.R., Limbert, D. Brown, F., 1970, Appl. Phys. Lett., 18, 383.ADSCrossRefGoogle Scholar
  2. Allwood, R.L., Devine, S.D., Mellish, R.G., Smith, S.D. and Wood, R.A., 1970, J. Phys. C3, L 186.ADSGoogle Scholar
  3. Basov, N.G., Graziuk, A.Z., Efimmov, V.F., Zubarev, I.G., Katulin, V.A. and Popov, Ju.M., 1966, Proc. Int. Conf. on Semic. Phys., Kyoto (Phys. Soc. Jap.), p. 277.Google Scholar
  4. Bechtel, J.H. and Smith, W.L., 1976, Phys. Rev., B13, 3515.ADSGoogle Scholar
  5. Bierig, R.W., Weiler, M.H. and Lax, B, 1969, Phys. Rev., 186, 747.ADSCrossRefGoogle Scholar
  6. Bowers, R. and Yafet, Y., 1959, Phys. Rev., 115, 1165.ADSCrossRefGoogle Scholar
  7. Brignall, N., Wood, R.A., Pidgeon, C.R. and Wherrett, B.S., 1974, Opt. Commun., 12, 17.ADSCrossRefGoogle Scholar
  8. Brown, T.L. and Wolff, P.A., 1972, Phys. Rev. Lett., 29, 363.ADSGoogle Scholar
  9. Brueck, S.R.J. and Mooradian, A., 1973, Opt. Commun., 8, 263.ADSCrossRefGoogle Scholar
  10. Brueck, S.R.J., Mooradian, A. and Blum, F.A., 1973, Phys. Rev., B7, 5253.ADSGoogle Scholar
  11. Button, K.J., Lax. B., Weiler, M.H. and Reine, M., 1966, Phys. Rev. Lett., 17, 1005.ADSCrossRefGoogle Scholar
  12. Dennis, R.B., Firth, W.J., McNeish, A., Pidgeon, C.R., Smith, S.D., Smith, J.W., Wherrett, B.S. and Wood, R.A., 1972, Proc. Int. Conf. on Semic. Phys. (PWN, Warsaw) p. 364; Proc. Roy. Soc., A331, 203.Google Scholar
  13. De Silets, C.S. and Patel, C.K.N., 1973, Appl. Phys. Lett., 22, 543.ADSCrossRefGoogle Scholar
  14. Doviak, J.M., Gibson, A.F., Kimmett, M.F. and Walker, A.C., 1973, J. Phys., C6, 593.ADSGoogle Scholar
  15. Favrot, G., Aggarwal, R.L. and Lax, B., 1976a, Sol. State Commun., 18, 577.ADSCrossRefGoogle Scholar
  16. Favrot, G., Aggarwal, R.L. and Lax, B., 1976b, Proc. Int. Conf. on Semic. Phys. (Ed. Fumi, North Holland, Amsterdam) p. 1035.Google Scholar
  17. Firth, W.J., 1972, IEEE J. Quant. Electron., QE-8, 869.ADSCrossRefGoogle Scholar
  18. Firth, W.J., 1973, Opt. Commun., 9, 84.ADSCrossRefGoogle Scholar
  19. Gibson, A.F., Hatch, C.B., Maggs, P.N.D., Tilley, D.R. and Walker, A.C., 1976, J. Phys., C9, 3259.ADSGoogle Scholar
  20. Grisar, R. and Wachernig, H., 1977, Appl. Phys., 12, 1.ADSCrossRefGoogle Scholar
  21. Holah, G.D., Dempsey, J., Miller, D.A.B., Wherrett, B.S. and Miller, A., 1978, Proc. Int. Conf. on Semic. Phys., (Ed. Wilson, Inst. of Phys., Bristol), p. 505.Google Scholar
  22. Houghton, J.T. and Smith, S.D., 1966, “Infrared Physics”, (Pub. Oxford University Press), p. 129.Google Scholar
  23. Kane, E.O., 1956, J. Phys. Chem. Sol., 1, 82.ADSCrossRefGoogle Scholar
  24. Kane, E.O., 1957, J. Phys. Chem. Sol., 1, 249.ADSCrossRefGoogle Scholar
  25. Lee, C.C. and Fan, H.Y., 1974, Phys. Rev., B9, 3502.ADSGoogle Scholar
  26. Loudon, R., 1964, Adv. Phys., 13, 423.ADSCrossRefGoogle Scholar
  27. Mahr, H., 1975, “Quantum Electronics”, (Ed. Rabin and Tang., Ac. Press, New York), Vol. I, p. 285.Google Scholar
  28. Manlief, S.K. and Palik, E.D., 1973, Sol. State Commun., 12, 1071.ADSCrossRefGoogle Scholar
  29. Miller, A., Johnston, A.M., Dempsey, J., Smith, J., Pidgeon, C.R. and Holah, G.D., 1979, J. Phys. C., to be published.Google Scholar
  30. Mooradian, A., 1975, Proc. 16th Scottish Universities Summer School in Physics, “Nonlinear Optics”, (Ac. Press, London, N.Y.), p. 213.Google Scholar
  31. Mooradian, A., Brueck, S.R.J. and Blum, F.A., 1970, Appl. Phys. Lett., 17, 481.ADSCrossRefGoogle Scholar
  32. Nguyen, V.T. and Bridges, T.J., 1972, Phys. Rev. Lett., 29, 359.ADSCrossRefGoogle Scholar
  33. Nguyen, V.T. and Bridges, T.J., 1973, Proc. Int. Conf. on Laser Spectroscopy, Vail (Eds. Brewer and Mooradian, Plenum Press, N.Y.), p. 513.Google Scholar
  34. Nguyen, V.T. and Burkhardt, E.G., 1976, Appl. Phys. Lett., 28, 187.ADSCrossRefGoogle Scholar
  35. Pascher, H., Appold, G., Ebert, R. and Hafele, H.G., 1978, Appl. Phys., 15, 53.ADSCrossRefGoogle Scholar
  36. Patel, C.K.N. and Shaw, E.D., 1970, Phys. Rev. Lett., 24, 451.ADSCrossRefGoogle Scholar
  37. Patel, C.K.N. and Shaw, E.D., 1971, Phys. Rev., B3, 1279.ADSGoogle Scholar
  38. Patel, C.K.N. and Slusher, R.E., 1968, Phys. Rev., 167, 413.ADSCrossRefGoogle Scholar
  39. Patel, C.K.N., 1978, Phys. Rev. Lett., 40, 535.ADSCrossRefGoogle Scholar
  40. Pidgeon, C.R. and Brown, R.N., 1966, Phys. Rev., 146, 575.ADSCrossRefGoogle Scholar
  41. Pidgeon, C.R. and Groves, S.H., 1969, Phys. Rev., 186, 824.ADSCrossRefGoogle Scholar
  42. Pidgeon, C.R., Wherrett, B.S., Johnston, A.M., Dempsey, J. and Miller, A., 1979, Phys. Rev. Lett., to be published.Google Scholar
  43. Pidgeon, C.R. and Colles, M.J., 1979, Nature, 279, 377.ADSCrossRefGoogle Scholar
  44. Romestain, R., Geschwind, S., Devlin, G.E. and Wolff, P.A., 1974, Phys. Rev. Lett., 33, 10.ADSCrossRefGoogle Scholar
  45. Roth, L.M., Lax, B. and Zwerdling, S., 1959, Phys. Rev., 114, 90.ADSCrossRefGoogle Scholar
  46. Smith, S.D., Pidgeon, C.R., Wood, R.A., McNeish, A. and Brignall, N.L., 1973, Proc. Int. Conf. on Laser Spectroscopy, (Plenum Press, N.Y.), p. 523.Google Scholar
  47. Smith, S.D., Dennis, R.B. and Harrison, R.G., 1977, Prog. in Q. Electron., 5, 205.ADSCrossRefGoogle Scholar
  48. Weiler, M.H., Bierig, R. and Lax, B., 1969, Phys. Rev., 184, 709.ADSCrossRefGoogle Scholar
  49. Wherrett, B.S. and Firth, W.J., 1972, IEEE J. Quant. Electron., QE-8, 865.ADSCrossRefGoogle Scholar
  50. Wherrett, B.S. and Wolland, S., 1974, J. Phys., C7, 4385.ADSGoogle Scholar
  51. Wolff, P.A., 1975, Proc. 16th Scottish Universities Summer School in Physics, “Nonlinear Optics”, (Ac. Press, London, N.Y.), p. 169.Google Scholar
  52. Wolff, P.A. and Pearson, G.A., 1966, Phys. Rev. Lett., 17, 1015.ADSCrossRefGoogle Scholar
  53. Wood, R.A., Ironside, C.N. and Smith, S.D., 1976, Opt. Commun., 16, 44.ADSCrossRefGoogle Scholar
  54. Wynne, J.J., 1972, Phys. Rev., B6, 534.ADSGoogle Scholar
  55. Yablonovitch, E., Bloembergen, N. and Wynne, J.J., 1972, Phys. Rev., B3, 2060.ADSGoogle Scholar
  56. Yafet, Y., 1966, Phys. Rev., 152, 858.ADSCrossRefGoogle Scholar
  57. Zawadzki, W., 1972, “New Developments in Semiconductors”, (Eds. Wallace, P.R. et al. (Noordhoff, Leiden), p. 441.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Carl R. Pidgeon
    • 1
  1. 1.Department of PhysicsHeriot-Watt UniversityEdinburghUK

Personalised recommendations