Surveys in Applied Mathematics pp 83-203 | Cite as

# Whiskered Tori for Integrable Pde’s: Chaotic Behavior in Near Integrable Pde’s

## Abstract

This article is a summary of our numerical and theoretical studies (which were done in various collaborations with Alan Bishop, Nick Ercolani, Greg Forest, and Steve Wiggins) of near integrable nonlinear wave equations under periodic boundary conditions. Two examples, a damped driven sine-Gordon equation and a perturbed nonlinear Schrödinger equation, are discussed in detail. The article begins with a thorough description of numerical experiments on the two systems in a parameter regime for which the response is spatially coherent, yet temporally chaotic. In addition to the description of this qualitative behavior in the pde’s, numerical and statistical issues are emphasized. Next, the spectral transform for the integrable nonlinear Schrödinger equation is developed in sufficient detail for use in both theoretical and numerical analysis of the perturbed system. This integrable theory includes the introduction of a Morse function which unveils a hyperbolic or saddle structure in the constants of the motion, the association of this saddle structure with complex double periodic eigenvalues for the spectral transform, and the use of Bäcklund transformations to produce from these complex double points analytical representations of homoclinic orbits and whiskered tori. Next, the spectral transform is used as a numerical diagnostic to monitor the chaotic attractors in the perturbed system. Finally, a Melnikov analysis of a perturbed model system is described. This geometric perturbation theory is based upon the analytical representations of whiskered tori in the nearby integrable system. Open problems are discussed throughout the text and summarized in the conclusion.

## Keywords

Lyapunov Exponent Bifurcation Diagram Unstable Manifold Chaotic Attractor Homoclinic Orbit## Preview

Unable to display preview. Download preview PDF.

## References

- [1]M. J. Ablowitz and B. M. Herbst, “Numerically induced chaos in the nonlinear Schrödinger equation,”
*Phys. Rev. Lett.***62**: 2065–2068 (1989).CrossRefMathSciNetGoogle Scholar - [2]M. J. Ablowitz and B. M. Herbst, “On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation,”
*SIAM Journal on Applied Mathematics***50**: 339–351 (1990).CrossRefMATHMathSciNetGoogle Scholar - [3]H. Abarbanel, R. Brown, and M Kennel, “Variation of Lyapunov exponents on a strange attractor,”
*J. Nonlinear Science***1**: 175–199 (1991).CrossRefMATHMathSciNetGoogle Scholar - [4]V. I. Arnold,
*Mathematical Methods of Classical Physics*, Springer-Verlag, New York (1978).Google Scholar - [5]G. L. Baker and J. P. Gollub,
*Chaotic Dynamics: An Introduction*, Cambridge Univ. Press, Cambridge (1990).MATHGoogle Scholar - [6]B. Birnir and R. Grauer, “An explicit description of the global attractor of the damped and driven sine-Gordon equation,”
*Comm. Math. Phys.***162**: 539–590 (1994).CrossRefMATHMathSciNetGoogle Scholar - [7]A. R. Bishop, M. G. Forest, D. W. McLaughlin, and E. A. Overman II, “A quasi-periodic route to chaos in a near-integrable pde,”
*Physica D***23**: 293–328 (1986).CrossRefMATHMathSciNetGoogle Scholar - [8]A. R. Bishop, M. G. Forest, D. W. McLaughlin, and E. A. Overman II, “A quasiperiodic route to chaos in a near-integrable pde: homoclinic crossings,”
*Phys. Lett. A***127**: 335–340 (1988).CrossRefMathSciNetGoogle Scholar - [9]A. R. Bishop, G. Gruner, and B. Nicolaenko, “Spatial-temporal coherence and chaos in physical systems,”
*Physica D***23**(1986).Google Scholar - [10]A. R. Bishop, D. W. McLaughlin, and E. A. Overman II, “Coherence and chaos in the driven, damped sine-Gordon equation: measurement of the soliton spectrum,”
*Physica D***19**: 1–41 (1986).CrossRefMATHMathSciNetGoogle Scholar - [11]R. Bott, “Nondegenerate critical manifolds,”
*Ann. of Math.***60**: 248–261 (1954).CrossRefMATHMathSciNetGoogle Scholar - [12]J. P. Boyd, “Theta functions, Gaussian series, and spatially periodic solutions of the Korteweg-de Vries equation,”
*J. Math. and Phys.*23.Google Scholar - [13]A. Calini, N. Ercolani, D. W. McLaughlin, and C. M. Schober, “Geometry of a conservative discretization of NLS,”
*Physica D*, to appear (1994).Google Scholar - [14]
- [15]C. Chow, PhD thesis, M.I.T. (1992).Google Scholar
- [16]P. Constantin, “A construction of inertial manifolds,”
*Contemporary Mathematics***99**(1989).Google Scholar - [17]P. Constantin, C. Foias, B. Nicolaenko, and R. Temam,
*Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations*, Springer-Verlag, New York (1989).CrossRefMATHGoogle Scholar - [18]E. J. Doedel, in:
*Proc. 10th Manitoba Conf. on Num. Math. and Comp.*(1980).Google Scholar - [19]E. J. Doedel, “Auto, a program for the automatic bifurcation analysis of autonomous systems,”
*Cong. Num*.**30**: 265–284 (1981).MathSciNetGoogle Scholar - [20]C. Doering, J. D. Gibbon, D. D. Holm, and B. Nicolaenko, “Inertial manifolds for the Ginzburg-Landau equation,”
*Nonlinearity I*1: 279–309 (1989).CrossRefMathSciNetGoogle Scholar - [21]B. A. Dubrovin, “Theta functions and non-linear equations,”
*Russ. Math. Surveys***36-2**: 11–92 (1974).MathSciNetGoogle Scholar - [22]B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators and abelian varieties,”
*Usp. Mat. Nauk.***31**: 55–136 (1976).MATHMathSciNetGoogle Scholar - [23]N. M. Ercolani and M. G. Forest, “The geometry of real sine-Gordon wavetrains,”
*Commun. Math. Phys.***99**: 1–9 (1985).CrossRefMATHMathSciNetGoogle Scholar - [24]N. M. Ercolani, M. G. Forest, and D. W. McLaughlin, “Geometry of the modulational instability I, II,”
*Memoirs of AMS*, to appear.Google Scholar - [25]N. Ercolani, M. G. Forest, and D. W. McLaughlin,
*Notes on Melnikov Integrals for Models of the Driven Pendulum Chain*, Preprint, University of Arizona (1989).Google Scholar - [26]N. Ercolani, M. G. Forest, and D. W. McLaughlin, “Geometry of the modulational instability, Part III: homoclinic orbits for the periodic sine-Gordon equation,”
*Physica D***43**: 349–384 (1990).CrossRefMATHMathSciNetGoogle Scholar - [27]N. M. Ercolani, M. G. Forest, and D. W. McLaughlin,
*Fully Nonlinear Modal Equations for Nearly Integrable PDE’s*, Preprint, Ohio State University (1988).Google Scholar - [28]N. M. Ercolani, M. G. Forest, and D. W. McLaughlin,
*Notes on Melnikov Integrals for Models of the Driven Pendulum Chain*, Preprint, University of Arizona (1988).Google Scholar - [29]N. M. Ercolani and D. W. McLaughlin,
*Toward a Topological Classification of Integrable Pde’s*, in the series:*The Geometry of Hamiltonian Systems*, Springer-Verlag, New York (1989).Google Scholar - [30]N. Ercolani, D. W. McLaughlin, and H. H. Roitner,
*Traveling Wave Attractors for a KS-KdV Equation*, Preprint, University of Arizona (1991).Google Scholar - [31]J. D. Farmer, “Chaotic attractors of an infinite-dimensional dynamical system,”
*Physica D***4**: 366–393 (1982).CrossRefMATHMathSciNetGoogle Scholar - [32]N. Fenichel, “Asymptotic stability with rate conditions,”
*Ind. Univ. Math. J.***23**: 1109–1137 (1974).CrossRefMATHMathSciNetGoogle Scholar - [33]N. Fenichel, “Geometric singular perturbation theory for ordinary differential equations,”
*J. Diff. Eqns.***31**: 53–98 (1979).CrossRefMATHMathSciNetGoogle Scholar - [34]W. Ferguson, H. Flaschka, D. W. McLaughlin, “Nonlinear normal modes of the Toda chain,”
*J. Comp. Phys.***45**: 157–209 (1982).CrossRefMATHMathSciNetGoogle Scholar - [35]R. Flesch, M. G. Forest, and A. Sinha, “Numerical inverse spectral transform for the periodic sine-Gordon equation: theta function solutions and their linearized stability,”
*Physica D***48**: 169–231 (1991).CrossRefMATHMathSciNetGoogle Scholar - [36]A. T. Fomenko,
*Topological Classification of all Integrable Hamiltonian Differential Equations of General Type with Two Degrees of Freedom*, Volume 22 of*The Geometry of Hamiltonian Systems*, Springer-Verlag, New York (1989).Google Scholar - [37]M. G. Forest, C. Goedde, and A. Sinha, “Chaotic transport and integrable instabilities in a nearly integrable Hamiltonian, discrete sine-Gordon lattice,”
*Physica D***67**: 347–386 (1993).CrossRefMATHMathSciNetGoogle Scholar - [38]M. G. Forest and D. W. McLaughlin, “Modulations of sine-Gordon and sinh-Gordon wavetrains,”
*Stud. Appl Math.***68**: 11–59 (1983).MATHMathSciNetGoogle Scholar - [39]M. G. Forest and D. W. McLaughlin, “Spectral theory for the periodic sine-Gordon equation: a concrete viewpoint,”
*J. Math. Phys.***23**: 1248–1277 (1982).CrossRefMATHMathSciNetGoogle Scholar - [40]M. G. Forest, S. P. Sheu, and A. Sinha, “Frequency and phase locking of spatially periodic perturbed sine-Gordon breather trains,”
*SIAMJ. Appl Math.***52**: 746–761 (1992).CrossRefMATHMathSciNetGoogle Scholar - [41]B. Fornberg and G. B. Whitham, “A numerical and theoretical study of certain nonlinear wave phenomena,”
*Philosophical Transactions of the Royal Society of London***289**: 372–404 (1978).MathSciNetGoogle Scholar - [42]J. Garnett and E. Trubowitz, “Gaps and bands of one dimensional periodic Schrödinger operators,”
*Comment Math. Helvetia***59**: 258–312 (1984).CrossRefMATHMathSciNetGoogle Scholar - [43]J. Garnett and E. Trubowitz, “Gaps and bands of one dimensional periodic Schrödinger operators,”
*Comment Math. Helvetia***62**: 18–37 (1987).CrossRefMATHMathSciNetGoogle Scholar - [44]R. Grauer and B. Birnir, “The center manifold and bifurcations of the dampled and driven sine-Gordon breather,”
*Physica D***56**: 165–184 (1992).CrossRefMATHMathSciNetGoogle Scholar - [45]B. Grebert,
*Problems Spectraux Inverses Pour Les Systemes AKNS Sur La Droite Réelle*, Thése de l’Université Paris-Nord (1990).Google Scholar - [46]B. Grebert and J. C. Gui llot,
*Le Probléme Spectral Inverse Pour Les Systémes AKNS Périodiques Sur La Droite Réelle, séminaire equations aux Dérivées Partielles*, Ecole Polytechnique (1990).Google Scholar - [47]B. Grebert and J. C. Guillot,
*Gaps of One Dimensional Periodic AKNS Systems*, Preprint, Ecole Polytechnique (1990).Google Scholar - [48]J. Guckenheimer and P. Holmes,
*Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields*, Appl. Math. Sci.,**42**: (1983).Google Scholar - [49]P. C. Hohenberg and B. I. Shraiman, “Chaotic behavior of an extended system,”
*Physica D***37**: 109–115 (1989).CrossRefMathSciNetGoogle Scholar - [50]C. K. R. T. Jones and N. Kopell,
*Tracking Invariant Manifolds with Differential Forms, J. Diff Eq.*, to appear (1995).Google Scholar - [51]J. Kaplan and J. Yorke,
*Functional Differential Equations and Approximation of Fixed Points*, Springer-Verlag, New York (1979).Google Scholar - [52]G. Kovacic,
*Orbits Homoclinic to Resonances: Chaos in a Model of the Forced and Damped Sine-Gordon Equation*, PhD thesis, California Institue of Technology (1989).Google Scholar - [53]G. Kovacic and S. Wiggins,
*Orbits Homoclinic to Resonances, with an Application to Chaos in a Modes of the Forced and Damped Sine-Gordon Equation, Physica D***57**, 185–225 (1992).MATHMathSciNetGoogle Scholar - [54]I. M. Krichever, “Perturbation theory in periodic problems for two-dimensional integrable systems,”
*Sov. Sci. Rev. C Math.***9**(1991).Google Scholar - [55]P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,”
*Comm. Pure Appl. Math.***21**: 467(1968).CrossRefMATHMathSciNetGoogle Scholar - [56]Y. Li,
*Chaotic Dynamics in Partial Differential Equations*, PhD thesis, Princeton University (1993).Google Scholar - [57]Y. Li and D. W. McLaughlin, “Homoclinic orbits and Bäcklund transformations for the doubly periodic Davey—Stewartson equation,” in:
*Nonlinear Processes in Physics, Proceedings of the III Potsdam—V Kiev Workshop at Clarkson University*,*Potsdam, NY*, Springer-Verlag, pp. 122-125 (1993).Google Scholar - [58]Y. Li and D. W. McLaughlin, “Morse and Melnikov Functions for NLS pde’s,”
*Comm. Math. Phys.***162**: 175–214(1994).CrossRefMATHMathSciNetGoogle Scholar - [59]Y. Li and D. W. McLaughlin, “Homoclinic orbits and chaos in discretized perturbed NLS systems. Part I. Homoclinic orbits,”
*J. Nonlinear Science*, to appear (1995).Google Scholar - [60]Y. Li, D. McLaughlin, J. Shatah, and S. Wiggins,
*Homoclinic orbits in Perturbed NLS Pde’ s*, Preprint (1995).Google Scholar - [61]Y. Li, D. McLaughlin, and S. Wiggins,
*Invariant Manifolds and their Fibrations for Perturbed NLS Pde’s: Graph Transform Approach*, Springer-Verlag, Berlin (1995).Google Scholar - [62]Y. Li and S. Wiggins, “Symbolic dynamics for discretized NLS,”
*J. Nonlinear Science*, to appear (1995).Google Scholar - [63]P. S. Lomdahl and M. R. Samuelsen, “Persistent breather excitations in an ac-driven sine-Gordon system with loss,”
*Phys. Rev. Lett.***34**: 664 (1986).Google Scholar - [64]D. J. L. Lumley,
*Coherent Structures in Turbulence*, Academic Press, New York (1981).Google Scholar - [65]W. Magnus and W. Winkler,
*Hill’s Equation*, Wiley-Interscience, New York (1966).MATHGoogle Scholar - [66]V. B. Matveev,
*Abelian Functions and Solitons*, Preprint, University of Wroclaw (1973).Google Scholar - [67]H. P. McKean, “The sine-Gordon and sinh-Gordon equations on the circle,”
*Comm. Pure Appl. Math.***34**: 197–257(1981).CrossRefMATHMathSciNetGoogle Scholar - [68]H. P. McKean and E. Trubowitz, “Hill’s surfaces and their theta functions,”
*Bull. AMS***84**: 1042–1085 (1978).CrossRefMATHMathSciNetGoogle Scholar - [69]D. W. McLaughlin,
*Notes on the Periodic NLS Equation*, unpublished (1988).Google Scholar - [70]D. W. McLaughlin, E. A. Overman II, S. Wiggins, and C. Xiong, “Homoclinic orbits in a four-dimensional model of a perturbed NLS equation: a geometric singular perturbation study,”
*Dynamics Reports*, to appear (1995).Google Scholar - [71]D. W. McLaughlin and C. M. Schober, “Chaotic and homoclinic behavior for numerical discretizations of NLS,”
*Physica D***57**: 447–465 (1992).CrossRefMATHMathSciNetGoogle Scholar - [72]A. C. Newell,
*Solitons in Mathematics and Physics*, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia (1985).CrossRefGoogle Scholar - [73]E. A. Overman II, C. Xiong, and M. Berliner,
*Convergence of Low-Mode Truncations of the Driven Damped Sine-Gordon Equation*to appear.Google Scholar - [74]E. Overman, C. Xiong, and M. Berliner,
*Low Mode Truncation Methods in the Sine-Gordon Equation*, Preprint, Ohio State University (1991).Google Scholar - [75]J. Poschel and E. Trubowitz,
*Inverse Spectral Theory*, Academic Press, New York (1987).Google Scholar - [76]H. H. Roitner,
*Applications of the Inverse Spectral Transform to a Korteweg-de Vries Equation with a Kuramoto—Sivashinsky-Type Perturbation*, PhD thesis, University of Arizona (1991).Google Scholar - [77]D. H. Sattinger and V. D. Zurkowski, “Gauge theory of Backlund transformations. II,”
*Physica D***26**: 225–250 (1987).CrossRefMATHMathSciNetGoogle Scholar - [78]C. A. Schober,
*A Backlund Transform for the Discrete Nonlinear Schrödinger Equation*, Preprint, University of Arizona (1991).Google Scholar - [79]H. Segur, “An analytical model of periodic waves in shallow water,”
*Studies in App. Math.***73**: 183–220 (1984).MathSciNetGoogle Scholar - [80]M. Taki and K. H. Spatschek, “Temporal chaos via period-doubling route in sine-Gordon system,”
*Journal de Physique, Paris*, to appear.Google Scholar - [81]R. Teman,
*Infinite Dimensional Dynamical Systems in Mechanics and Physics*, Springer-Verlag, New York (1988).CrossRefGoogle Scholar - [82]G. Terrones, D. W. McLaughlin, E. A. Overman II, and A. Pearlstein, “Stability and Bifurcation of Spatially Coherent Solutions of the Damped Driven Nonlinear Schrödinger Equation,”
*SIAM Journal Applied Math.***50**: 791–818 (1990).CrossRefMATHMathSciNetGoogle Scholar - [83]S. Wiggins,
*Global Bifurcations and Chaos: Analytical Methods*, Springer-Verlag, New York (1988).CrossRefMATHGoogle Scholar - [84]S. Wiggins,
*Intrduction to Applied Nonlinear Dynamical Systems and Chaos*, Springer-Verlag, Berlin (1990).CrossRefGoogle Scholar - [85]C. Xiong,
*Low Mode Truncation Methods in the Sine-Gordon Equation*, PHD thesis, Ohio State University (1991).Google Scholar - [86]D. M. Young and R. T. Gregory,
*A Survey of Numerical Mathematics*, Addison-Wesley, Reading (1972).MATHGoogle Scholar - [87]V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,”
*Sov. Phys. JETP***34**(1): 62–69 (1972).MathSciNetGoogle Scholar