Advertisement

On Smoothing Operations and their Generating Functions

  • I. J. Schoenberg
Part of the Contemporary Mathematicians book series (CM)

Abstract

In this paper we are mainly concerned with two kinds of linear transformations, the sequence convolution transformation
$$ {y_n} = \sum\limits_{v = - 8}^\infty {{a_{n - v}}{x_v}} $$
(1)
and the integral convolution transformation
$$ g\left( x \right) = \int_{ - \infty }^\infty {\Lambda \left( {x - 1} \right)f\left( t \right)} dt, $$
(2)
where the sequence a n and the function Δ(x) are thought of as given. In §2 we also consider the ordinary linear transformation
$$ {y_i} = \sum\limits_{k = 1}^n {{a_{ik}}{x_k}} \quad \quad \left( {i = 1, \cdots ,m} \right). $$
(3)
The loosely connected topics to be discussed concerning these transformations are perhaps best brought together under the general subject of smoothing operations.

Keywords

Entire Function Laurent Series Frequency Function Real Zero Vertical Strip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    E. Laguerre, Sur les fonctions de genre zéro et du genre un, C. R. Acad. Sci. Paris vol. 95 (1882) pp. 828–831 [also Oeuvres, vol. I, pp. 174-177].Google Scholar
  2. 2.
    J. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor, Journal de Mathématiques (4) vol. 8 (1892) pp. 101–186.Google Scholar
  3. 3.
    A. Hurwitz, Sur le problème des isopérimetres, C. R. Acad. Sci. Paris vol. 132 (1901) pp. 401–403 [also Werke, vol. I, pp. 490-491].Google Scholar
  4. 4.
    M. Fekete, Über ein Problem von Laguerre, Rendiconti di Palermo vol. 34 (1912) pp. 1–12.CrossRefGoogle Scholar
  5. 5.
    G. Pólya, Über Annäherung durch Polynome mit lauter reellen Wurzeln, Rendiconti di Palermo vol. 36 (1913) pp. 1–17.CrossRefGoogle Scholar
  6. 6.
    J. Grommer, Ganze transzendente Funktionen mit lauter reellen Nullstellen, Journal für Mathematik vol. 144 (1914) pp. 114–165.Google Scholar
  7. 7.
    G. Pólya and I. Schur, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, Journal für Mathematik vol. 144 (1914) pp. 89–113.Google Scholar
  8. 8.
    G. Pólya, Algebraische Untersuchungen über ganze Funktionen vom geschlechte Null und Eins, Journal für Mathematik vol. 145 (1915) pp. 224–249.Google Scholar
  9. 9.
    O. D. Kellogg, The oscillation of functions of an orthogonal set, Amer. J. Math, vol. 38 (1916) pp. 1–5.CrossRefGoogle Scholar
  10. 10.
    —, Orthogonal function sets arising from integral equations, Amer. J. Math. vol. 40 (1918) pp. 144–154.Google Scholar
  11. 11.
    —, Interpolation properties of orthogonal sets of solutions of differential equations, Amer. J. Math. vol. 40 (1918) pp. 225–234.CrossRefGoogle Scholar
  12. 12.
    H. Hamburger, Bemerkungen zu einer Fragestellung des Herrn Pólya, Math. Zeit. vol. 7 (1920) pp. 302–322.CrossRefGoogle Scholar
  13. 13.
    G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. vol. 24 (1922) pp. 312–324.CrossRefGoogle Scholar
  14. 14.
    G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. II, Berlin, 1925.Google Scholar
  15. 15.
    H. H. Wolfenden, On the development of formulae for graduation by linear compounding, with special reference to the work of Erastus L. De Forest, Transactions of the Acturial Society of America vol. 26 (1925) pp. 81–121.Google Scholar
  16. 16.
    S. Bernstein, Leçons sur les propriétés extrémales des fonctions analytiques, Paris, 1926.Google Scholar
  17. 17.
    E. T. Whittaker and G. Robinson, The calculus of observations, 2d ed., London and Glasgow, 1926.Google Scholar
  18. 18.
    A. Marchaud, Sur les continus d’ordre borné, Acta Mathematica vol. 55 (1930) pp. 67–115.CrossRefGoogle Scholar
  19. 19.
    I. J. Schoenberg, Übervariationsvermindernde lineare Transformationen, Math. Zeit. vol. 32 (1930) pp. 321–328.CrossRefGoogle Scholar
  20. 20.
    G. Pólya, Qualitatives über Wärmeausgleich, Zeitschrift für Angewandte Mathematik und Mechanik vol. 13 (1933) pp. 125–128.CrossRefGoogle Scholar
  21. 21.
    I. J. Schoenberg, Zur Abzählung der reellen Wurzeln algebraischer Gleichungen, Math. Zeit. vol. 38 (1934) pp. 546–564.CrossRefGoogle Scholar
  22. 22.
    T. S. Motzkin, Beiträge zur Theorie der linearen Ungleichungen, dissertation, Basel, 1933, Jerusalem, 1936.Google Scholar
  23. 23.
    A. Wintner, On a class of Fourier transforms, Amer. J. Math. vol. 58 (1936) pp. 45–90.CrossRefGoogle Scholar
  24. 24.
    F. Gantmakher and M. Krein, Sur les matrices complètement non négatives et oscillatoires, Compositio Math. vol. 4 (1937) pp. 445–476.Google Scholar
  25. 25.
    P. Scherk, Über differenzierbare Kurven und Bögen, Casopis pro pĕstovani Matematiky a Fysiky vol. 66 (1937) pp. 165–191.Google Scholar
  26. 26.
    G. B. Dantzig, On a class of distributions that approach the normal distribution function, Ann. Math. Statist, vol. 10 (1939) pp. 247–253.CrossRefGoogle Scholar
  27. 27.
    G. Pólya and N. Wiener, On the oscillation of the derivatives of a periodic function, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 249–256.CrossRefGoogle Scholar
  28. 28.
    O. Szász, On sequences of polynomials and the distribution of their zeros, Bull. Amer. Math. Soc. vol. 49 (1943) pp. 377–383.CrossRefGoogle Scholar
  29. 29.
    T. N. E. Greville, The general theory of osculatory interpolation, Transactions of the Actuarial Society of America vol. 45 (1944) pp. 202–265.Google Scholar
  30. 30.
    H. Rademacher and I. J. Schoenberg, An iteration method for calculation with Laurent series, Quarterly of Applied Mathematics vol. 4 (1946) pp. 142–159.Google Scholar
  31. 31.
    I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quarterly of Applied Mathematics vol. 4 (1946) Part A pp. 45–99, Part B, pp. 112-141.Google Scholar
  32. 32.
    D. V. Widder, The Laplace transform, Princeton, 1946.Google Scholar
  33. 33.
    H. B. Curry and I. J. Schoenberg, On Pólya frequency functions IV: The spline functions and their limits, as yet unpublished; see Bull. Amer. Math. Soc. Abstract 53-11-380.Google Scholar
  34. 34.
    I. J. Schoenberg, On totally positive functions, Laplace integrals and entire functions of the Laguerre-Pólya-Schur type, Proc. Nat. Acad. Sci. U.S.A. vol. 33 (1947) pp. 11–17.CrossRefGoogle Scholar
  35. 35.
    D. V. Widder, Inversion formulas for convolution transforms, Duke Math. J. vol. 14 (1947) pp. 217–249.CrossRefGoogle Scholar
  36. 36.
    W. Feller, On the Kolmogorov-Smirnov limit theorems for empirical distributions, Ann. Math. Statist, vol. 19 (1948) pp. 177–189.CrossRefGoogle Scholar
  37. 37.
    I. I. Hirschman and D. V. Widder, The inversion of convolution transform with totally positive kernels, Proc. Nat. Acad. Sci. U.S.A. vol. 34 (1948) pp. 152–156.CrossRefGoogle Scholar
  38. 38.
    I. J. Schoenberg, Some analytical aspects of the problem of smoothing, Courant Anniversary volume “Studies and Essays,” New York, 1948, pp. 351-370.Google Scholar
  39. 39.
    —, On variation-diminishing integral operators of the convolution type, Proc. Nat. Acad. Sci. U.S.A. vol. 34 (1948) pp. 164–169.CrossRefGoogle Scholar
  40. 40.
    I.I. Hirschman and D. V. Widder, The inversion of a general class of convolution transforms, Trans. Amer. Math. Soc. vol. 66 (1949) pp. 135–201.CrossRefGoogle Scholar
  41. 41.
    D. V. Widder —, A representation theory for a general class of convolution transforms, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 69–97.Google Scholar
  42. 42.
    P. Laasonen, Einige Sätze über Tschebycheffsche Systeme, Ann. Acad. Sci. Fennicae, Ser. A. I. Math. Phys. no. 52, 24 pp., 1949.Google Scholar
  43. 43.
    I. J. Schoenberg and Anne Whitney, Sur la positivité des determinants de translations des fonctions de fréquence de Pólya..., C. R. Acad. Sci. Paris vol. 228 (1949) pp. 1996–1998.Google Scholar
  44. 44.
    F. Gantmakher and M. Krein, Oscillatory matrices and kernels and small vibrations of mechanical systems (in Russian), 2d ed., Moscow, 1950.Google Scholar
  45. 45.
    I.I. Hirschman, Proof of a conjecture of I. J. Schoenberg, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 63–65.CrossRefGoogle Scholar
  46. 46.
    I. J. Schoenberg, On Pólya frequency functions II: Variation-diminishing integral operators of the convolution type, Acta Sci. Math. Szeged vol. 12 (1950) pp. 97–106.Google Scholar
  47. 47.
    —, The finite Fourier series and elementary geometry, Amer. Math. Monthly vol. 57 (1950) pp. 390–404.CrossRefGoogle Scholar
  48. 48.
    M. Aissen, A. Edrei, I. J. Schoenberg, and Anne Whitney, On the generating functions of totally positive sequences, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951) pp. 303–307.CrossRefGoogle Scholar
  49. 49.
    F. John, On integration of parabolic equations by difference methods, Communications on Pure and Applied Mathematics vol. 5 (1952) pp. 155–211.CrossRefGoogle Scholar
  50. 50.
    T. S. Motzkin and I. J. Schoenberg, On lineal entire functions of n complex variables, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 517–526.Google Scholar
  51. 51.
    I. J. Schoenberg and Anne Whitney, A theorem on polygons in n dimensions with applications to variation-diminishing and cyclic variation-diminishing linear transformations, Compositio Math. vol. 9 (1951) pp. 141–160.Google Scholar
  52. 52.
    D. V. Widder, Weierstrass transforms of positive functions, Proc. Nat. Acad. Sci. U.S.A. vol. 37 (1951) pp. 315–317.CrossRefGoogle Scholar
  53. 53.
    —, Necessary and sufficient conditions for the representation of a function by a Weierstrass transform, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 430–439.CrossRefGoogle Scholar
  54. 54.
    J. Berghuis, A class of entire functions used in analytic interpolation, Proceedings Royal Neth. Acad, of Sciences. Ser. A vol. 55 (1952) pp. 468–473.Google Scholar
  55. 55.
    I. J. Schoenberg, On Pólya frequency functions I: The totally positive functions and their Laplace transforms, Journal d’Analyse Mathématique vol. 1 (1951) pp. 331–374; actually appeared in 1952.CrossRefGoogle Scholar
  56. 56.
    —, An isoperimetric inequality for closed curves convex in even-dimensional euclidean spaces, to appear in the Acta Math.Google Scholar
  57. 57.
    I. J. Schoenberg and Anne Whitney, On Pólya frequency functions III: The positivity of translation determinants with an application to the interpolation problem by spline curves, Trans. Amer. Math. Soc. vol. 74 (1953) pp. 246–259.Google Scholar
  58. 58.
    Anne Whitney, A reduction theorem for totally positive matrices, Journal d’Analyse Mathématique vol. 2 (1952) pp. 88–92.CrossRefGoogle Scholar
  59. 59.
    M. Aissen, I. J. Schoenberg, and A. Whitney, On the generating functions of totally positive sequences I, Journal d’Analyse Mathématique vol. 2 (1952) pp. 93–103.CrossRefGoogle Scholar
  60. 60.
    A. Edrei, On the generating functions of totally positive sequences II, Journal d’Analyse Mathématique vol. 2 (1952) pp. 104–109.CrossRefGoogle Scholar
  61. 61.
    —, Proof of a conjecture of Schoenberg on the generating function of a totally positive sequence, Canadian Journal of Mathematics vol. 5 (1953) pp. 86–94.CrossRefGoogle Scholar
  62. 62.
    —, On the generating function of doubly infinite, totally positive sequences, submitted for publication in Trans. Amer. Math. Soc.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • I. J. Schoenberg
    • 1
  1. 1.University of California, University of PennsylvaniaLos AngelesUSA

Personalised recommendations