Skip to main content

Cardinal Interpolation and Spline Functions VII. the Behavior of Cardinal Spline Interpolants as their Degree Tends to Infinity

  • Chapter
  • 658 Accesses

Part of the book series: Contemporary Mathematicians ((CM))

Abstract

Let F(x) be a function from ℝ to ℂ and let

$$S_m \left( x \right)\, = \,\sum\limits_{ - \infty }^\infty {F\left( \nu \right)L_m \left( {x - \nu } \right)}$$
(1)

be the spline function of degree 2m−1, with knots at the integers, that interpolates F(x) at all the integers. We know that S m (x), as defined by (1), exists if F(x) grows at most like a power | x |γ as x → ± ∞ (see [7]). Here we investigate conditions which will insure that S m (x) will converge to F(x) as m → ∞.

Sponsored by U.S. Army under contract No. DA—31–124—ARO—D—462.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. P. Boas, Jr., Entire functions, Academic Press, New York, 1954.

    Google Scholar 

  2. P. R. Lipow and I. J. Schoenberg, Cardinal interpolation and spline functions III. Cardinal Hermite interpolation, J. Linear Algebra Appl. 6 (1973), 273–304. Also MRC T. S. Rep. #1113

    Article  Google Scholar 

  3. W. Quade and L. Collatz, Zur Interpolationstheorie der reelen periodischen Funktionen, Sitzungsber. der Preuss. Akad. Wiss., Phys.-Math. Kl. XXX (1938), 383–429.

    Google Scholar 

  4. I. J. Schoenberg, Contributions to the problem of approximatiion of equidistant data by analytic functions, Quart. Appl. Math. 4 (1946), 45–99, 112-141.

    Google Scholar 

  5. I. J. Schoenberg, On spline interpolation at all integer points of the real axis, Mathematica (Cluj) 10 (1968), 151–170.

    Google Scholar 

  6. I. J. Schoenberg, Cardinal interpolation and spline functions, J. Approximation Theory 2 (1969), 167–206.

    Article  Google Scholar 

  7. I. J. Schoenberg, Cardinal interpolation and spline functions II. Interpolation of data of power growth, J. Approximation Theory 6 (1972), 404–420. Also MRC T.S. Rep. #1104.

    Article  Google Scholar 

  8. I. J. Schoenberg, Cardinal interpolation and spline functions IV. The exponential Euler splines, in: Linear Operators and Approximation (Proc. of Oberwolfach Conference, August 14-22, 1971), ISNM 20 (1972), 382-404. Also MRC T.S. Rep. #1153

    Google Scholar 

  9. I.J. Schoenberg, Cardinal interpolation and spline functions VI. Semi-cardinal interpolation and quadrature formulae, MRC T.S.R. #1180, J. Analyse Math. 27 (1974), 159–204.

    Article  Google Scholar 

  10. I. J. Schoenberg and A. Sharma, Cardinal interpolation and spline functions V. The B’Splines for cardinal Hermite interpolation, Linear Algebra Appl. 7 (1973), 1–42. Also MRC T.S. Rep. #1150

    Article  Google Scholar 

  11. J. M. Whittaker, On the cardinal function of interpolation theory, Proc. Edinburgh Math. Soc. 1 (1929), 41–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schoenberg, I.J. (1988). Cardinal Interpolation and Spline Functions VII. the Behavior of Cardinal Spline Interpolants as their Degree Tends to Infinity. In: de Boor, C. (eds) I. J. Schoenberg Selected Papers. Contemporary Mathematicians. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4899-0433-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0433-1_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4899-0435-5

  • Online ISBN: 978-1-4899-0433-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics