On Pólya Frequency Functions IV: The Fundamental Spline Functions and their Limits

  • H. B. Curry
  • I. J. Schoenberg
Part of the Contemporary Mathematicians book series (CM)


The present paper was written in 1945 and completed by 1947 (see the abstract [3]) but for no good reason has so far not been published. It appears now in a somewhat revised and improved form.


Spline Function Spline Interpolation Interpolation Problem Frequency Function Divided Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Bonnesen and W. Fenchel, Theorie der Konvexen Körper, Berlin, 1934.Google Scholar
  2. 2.
    H. B. Curry, Review of the paper [9], Math, Tables and other Aids to Comp. 2 (1947), 167–169 and 211-213.Google Scholar
  3. 3.
    H. B. Curry and I. J. Schoenberg, On Pólya frequency functions IV: The spline functions and their limits. Bull. Amer. Math. Soc., Abstract 380t, 53 (1947), 1114.Google Scholar
  4. 4.
    P. J. Davis, Interpolation and approximation, New York, 1963.Google Scholar
  5. 5.
    Ch. Hermite, Sur la formule d’interpolation de Lagrange, Oeuvres, vol. 3, 432-443.Google Scholar
  6. 6.
    I. I. Hirschman and D. V. Widder, The convolution transform, Princeton, 1955.Google Scholar
  7. 7.
    J. Korevaar and Ch. Loewner, Approximation on an arc by polynomials with restricted zeros, Indagationes Math., 26 (1964), 121–128.Google Scholar
  8. 8.
    N. E. Nörlund, Vorlesungen über Differenzenrechnung, Berlin, 1923.Google Scholar
  9. 9.
    I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math. 4 (1964) Part A, 45–99, Part B, 112-141.Google Scholar
  10. 10.
    I. J. Schoenberg, On Pólya frequency functions I: The totally positive functions and their Laplace transforms, J. d’Analyse Math., 1 (1951), 331–374.CrossRefGoogle Scholar
  11. 11.
    I. J. Schoenberg, On Pólya frequency functions II: Variation diminishing integral operators of the convolution type, Acta Sci. Math. Szeged, 12 (1950), 97–106.Google Scholar
  12. 12.
    I. J. Schoenberg and A. Whitney, On Pólya frequency functions III: The positivity of translation determinants with an application to the interpolation problem by spline curves, Trans. A.M.S., 74 (1953), 246–259.Google Scholar
  13. 13.
    I. J. Schoenberg, On the zeros of the generating functions of multiply positive sequences and functions, Annals of Math. 62 (1955), 447–471.CrossRefGoogle Scholar
  14. 14.
    I. J. Schoenberg, On interpolation by spline functions and its minimal properties, On Approximation Theory, International Series of Numerical Mathematics-ISNM, vol. 5 (1964), 109–129, Basel, Switzerland.Google Scholar
  15. 15.
    J. J. Schoenberg, On monosplines of least deviation and best quadrature formulae, J. SIAM Numer Analysis, Ser. B. vol. 2 (1965), 144–170.Google Scholar
  16. 16.
    F. Tricomi, Über die Summe mehrerer zufälliger Veränderlichen mit konstanten Verteilungsgesetzen, Jahresber. der deutschen math. Ver., 42 (1933), 174–179.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • H. B. Curry
    • 1
  • I. J. Schoenberg
    • 1
  1. 1.Pennsylvania State University and Mathematics Research Center, US Army, University of WisconsinUSA

Personalised recommendations