# On Pólya Frequency Functions

I. the Totally Positive Functions and their Laplace Transforms
• I. J. Schoenberg
Part of the Contemporary Mathematicians book series (CM)

## Abstract

We denote by T 1 the class of entire functions which are limits, uniform in every finite domain, of real polynomials with only real non-positive zeros. Likewise we denote by T 2 the wider class of entire functions obtained if in the previous definition we only require that the approximating polynomials be real and have only real zeros. From the classical work of Laguerre and Pólya(2) we know that ϕ(s) ∈ T 1 if and only if ϕ(s) admits a representation of the form
$$\begin{array}{*{20}{c}} {\Phi \left( s \right) = C{e^{\gamma s}}{s^m}\prod\limits_{v = 1}^\infty {\left( {1 + {\delta _v}s} \right)} ,} \\ {\left( {C\;real,\;\lambda \geqq 0,\quad {\delta _v} \geqq 0,\quad \sum {{\delta _v} < \infty } } \right),} \end{array}$$
(1)
and also that the elements ψ(s) of the class T 2 are characterized by the representation
$$\begin{array}{*{20}{c}} {\psi \left( s \right) = C{e^{ - \gamma }}^{{s^2} + \delta s}{s^m}\prod\limits_{v = 1}^\infty {\left( {1 + {\delta _v}s} \right){e^{ - \delta vs}},} } \\ {\left( {C\;real,\gamma \geqq 0,\;\delta ,{\delta _v}\;resl,\sum {{\delta _v}2 < \infty } } \right).} \end{array}$$
(2)
.

## Keywords

Entire Function Positive Function Imaginary Axis Frequency Function Real Zero
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Bibliography

1. 1.
M. Aissen, A. Edrei, I. J. Schoenberg and A. Whitney, On the generating functions of totally positive sequences. Proceedings of the National Academy of Sciences, 37 (1951), 303–307.
2. 2.
A. L. Cauchy, Exercices de Mathématiques, IIe année, Paris, 1827.Google Scholar
3. 3.
G. Doetsch, Theorie und Anwendung der Laplace-Transformation, Berlin, 1937.Google Scholar
4. 4.
J. Hadamard, Essai sur l’étude des fonctions données par leur développement de Taylor, Journal de Mathématiques, 4e série, 8 (1892).Google Scholar
5. 5.
H. Hamburger, Bemerkungen zu einer Fragestellung des Herrn Pólya, Mathematishe Zeitschrift, 7 (1920), 302–322.
6. 6.
I. I. Hirschman and D. V. Widder, The inversion of a general class of convolution transforms. Transactions of the American Mathematical Society, 66 (1949), 135–201.
7. 7.
I. I. Hirschman and D. V. Widder, Generalized inversion formulas for convolution transforms, Duke Mathematical Journal, 15 (1948), 659–696.
8. 8.
E. Laguerre, Sur les fonctions du genre zéro et du genre un, Oeuvres de Laguerre I, Paris, 1898, 174-177.Google Scholar
9. 9.
Th. Motzkin, Beitraege zur Theorie der linearen Ungleichungen, Jerusalem 1936.Google Scholar
10. 10.
G. Pólya und I. Schur, lieber zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, Journal für Mathematik, 144 (1914), 89–113.Google Scholar
11. 11.
G. Pólya, Ueber Annaeherung durch Polynome mit lauter reelen Wurzeln, Rendiconti di Palermo, 36 (1913), 1–17.
12. 12.
G. Pólya, Algebraische Untersuchungen über ganze Funktionen vom Geschlechte Null und Eins, Journal für Mathematik, 145 (1915), 224–249.Google Scholar
13. 13.
G. Pólya und G. Szegö, Aufgaben und Lehrsaetze aus der Analysis, II, Berlin, 1925.Google Scholar
14. 14.
I. J. Schoenberg, Ueber variationsvermindernde lineare Transformationen, Mathematische Zeitschrift, 32 (1930), 321–328.
15. 15.
I. J. Schoenberg, On totally positive functions, Laplace integrals and entire functions of the Laguerre-Polya-Schur type, Proceedings of the National Academy of Sciences, 33 (1947), 11–17.
16. 16.
I. J. Schoenberg et Anne Whitney, Sur lo positivité des déterminants de translation des fonctions de fréquence de Polya avec une application au problème d’interpolation par der fonctions “spline”, Comptes Rendus des séances de l’Académie des Sciences, (1949).Google Scholar
17. 17.
I. J. Schoenberg, On Polya frequency functions II: Variation-diminishing integral operators of the convolution type, Acta Scientiarum Mathematicarum, Szeged, 12 (1950), 97–106.Google Scholar
18. 18.
I. J. Schoenberg and Anne Whitney, A theorem on polygons in n dimensions with applications to variation-diminishing transformations, Compositio Mathemática, 9 (1951), 141–160.Google Scholar
19. 19.
W. Sierpinski, Sus les fonctions convexes mesurables, Fundamenta Mathematicae, 1 (1920), 125–129.Google Scholar
20. 20.
D. V. Widder, The Laplace transform, Princeton, 1946.Google Scholar
21. 21.
D. V. Widder, Weierstrass transforms of positive functions, Proceedings of the National Academy of Sciences, 37 (1951), 315–317.
22. 22.
A. Wintner, On a class of Fourier transforms, American Journal of Mathematics, 58 (1936), 45–90.