Experimental Confirmation of the Polarized Multilayer Theory of Cell Water Including Data That Lead to an Improved Definition of Colloids

  • Gilbert N. Ling


The polarized multilayer theory of cell water, as part of the association-induction hypothesis, and its rapidly gathering supportive experimental evidence were reviewed. It was shown that the new insight offered by this theory reconciles many hitherto unexplained phenomena and that new experimental data also suggest an improved definition of the concept of colloids.


Ringer Solution Cell Water Permanent Dipole Moment Membrane Theory Equilibrium Distribution Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benson, S. W., and Ellis, D. A., 1948, Surface areas of proteins. I. Surface areas, and heats of absorption, J. Amer. Chem. Soc. 70: 3563.CrossRefGoogle Scholar
  2. Benson, S. W., and Ellis, D. A., 1950, Surface areas of proteins. II. Adsorption of non-polar gases, J. Amer. Chem. Soc. 72: 2095.CrossRefGoogle Scholar
  3. Benson, S. W., Ellis, D. A., and Zwanzig, R. W., 1950, Surface areas of proteins. III. Adsorption of water, J. Amer. Chem. Soc. 72: 2102.CrossRefGoogle Scholar
  4. Bernal, J. D., and Fowler, R. H., 1933, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions, J. Chem. Phys. 1: 515.CrossRefGoogle Scholar
  5. Blanchard, K. C., 1940, Water, free and bound, Cold Springs Harb. Symp. Quant. Biol. 8: 1.CrossRefGoogle Scholar
  6. Bradley, S., 1936, Polymolecular adsorbed films. Part II. The general theory of the condensation of vapors on finely divided solids, J. Chem. Soc. 1467: 1799.CrossRefGoogle Scholar
  7. Brunauer, S., Emmett, P. H., and Teller, E., 1938, Adsorption of gases in multimolecular layers, J. Amer. Chem. Soc. 60: 309.CrossRefGoogle Scholar
  8. Bungenberg de Jong, H. G., 1949, Crystallization-coacervation-floc-culation in: “Colloid Science,” Vol. 2, H. R. Kruyt, ed., Elsevier Publ. Co., Inc., New York, p. 232.Google Scholar
  9. De Boer, J. H., and Zwikker, C., 1929, Adsorption als Folge von Polarisation; Die Adsorptionsisotherme, Z. Physik. Chem., B3: 407.Google Scholar
  10. Dole, M., and Faller, I. L., 1950, Water sorption by synthetic high polymers, J. Amer. Chem. Soc. 72: 414.CrossRefGoogle Scholar
  11. Edelmann, L., 1977, Potassium adsorption sites in frog muscle visualized by cesium and thallium under transmission electron microscope, Physiol. Chem. Phys. 9: 313.PubMedGoogle Scholar
  12. Edelmann, L., 1981, Electron microscopic demonstration of potassium binding sites in muscle, in: “Intern. Cell Biol. 1980–1981” H. G. Schweiger, ed., Springer-Verlag, Berlin, p. 941.CrossRefGoogle Scholar
  13. Edelmann, L. 1981, Selective accumulation of Li+, Na+, K+, Rb+, and Cs+ at protein sites of freeze-dried embedded muscle detected by LAMMA, Fresnius A. Anal. Chem., 308: 218.CrossRefGoogle Scholar
  14. Eisenberg, D., and Kauzmann, W., 1969, “The Structure and Properties of Water,” Oxford Press, Oxford.Google Scholar
  15. Fischer, M. H., and Suer, W. J., 1939, Base-protein acid compounds prepared from fibrin, Arch. Pathol., 27: 811.Google Scholar
  16. Fordham, S., and Tyson, J. T., 1937, Structure of semipermeable membrane of inorganic salts, J. Chem. Soc., 31: 483.CrossRefGoogle Scholar
  17. Glasstone, S., 1946, “Textbook of Physical Chemistry,” 2nd. ed., Van Nostrand, New York.Google Scholar
  18. Graham, T., 1861, Liquid diffusion applied to analysis, Phil. Trans. Roy. Soc., 151: 183.CrossRefGoogle Scholar
  19. Gortner, R. A., 1930, The state of water in colloidal and living systems, Trans. Farad. Soc., 26: 678.CrossRefGoogle Scholar
  20. Hill, A. V., 1930, State of water in muscle and blood and the osmotic behavior of muscle, Proc. Roy. Soc. B., 106: 477.CrossRefGoogle Scholar
  21. Holleman, L. W., Bungenberg de Jong, H. G., and Modderman, R. S. T., 1934, Zur Kenntnis-der lyophilen Kolloide. XXI Mitteilung über Koazervation. I: Einfache Koazervaten von Gelatinesolen, Koll. Beihefte, 39: 334.Google Scholar
  22. Jacobson, B., 1955, On the interpretation of dielectric constants of aqueous macromolecular solutions. Hydration of aqueous macromolecular solutions, J. Amer. Chem. Soc., 77: 2919.CrossRefGoogle Scholar
  23. Klotz, I., 1958, Protein hydration and behavior, Science, 128: 815.PubMedCrossRefGoogle Scholar
  24. Ling, G. N., 1962, “ A Physical Theory of the Living State: The Association-Induction Hypothesis,” Blaisdell, Waltham.Google Scholar
  25. Ling, G. N., 1965, The physical state of water in living cell and model systems, Ann. N.Y. Acad. Sci., 125: 401.PubMedCrossRefGoogle Scholar
  26. Ling, G. N., 1967, Effects of temperature on the state of water in the living cell, in: “ Thermobiology,” A. Rose, ed., Academic Press, New York, p. 5.Google Scholar
  27. Ling, G. N., 1973, What component of the living cell is responsible for its semipermeable properties? Polarized water or lipids? Biophys. J., 13: 807.PubMedCrossRefGoogle Scholar
  28. Ling, G. N., 1977, K+ localization in muscle cells by auto-radiography, and identification of K+ adsorbing sites in living muscle cells with uranium binding sites in electron micrographs of fixed call preparations, Physiol. Chem. Phys. 9: 319.PubMedGoogle Scholar
  29. Ling, G. N., 1979, The polarized multilayer theory of cell water and other facets of the association-induction hypothesis concerning the distribution of ions and other solutes in living cells, in: “The Aqueous Cytoplasm,” Alec D. Keith, ed., Marcel Dekker, Inc., New York, p. 23.Google Scholar
  30. Ling, G. N., 1980, The role of multilayer polarization of cell water in the cell swelling and shrinkage of living cells, Physiol. Chem. Phys. 12: 383.PubMedGoogle Scholar
  31. Ling, G. N., 1983, “In Search of the Physical Basis of Life,” Plenum Publishing Corp., New York.Google Scholar
  32. Ling, G. N., and Miller, C., 1977, Structural changes of intracellular water in caffeine-contracted muscle cells, Physiol. Chem. Phys. 2: 495.Google Scholar
  33. Ling, G. N., Miller, C., and Ochsenfeld, M. M., 1973, The physical state of solutes and water in living cells according to the association-induction hypothesis, Ann. N.Y. Acad. Sci. 204: 6.PubMedCrossRefGoogle Scholar
  34. Ling, G. N., and Murphy, R. C., 1982, NMR relaxation of water protons under the influence of proteins and other linear polymers, Physiol. Chem. Phys. 14:xxx (in press)Google Scholar
  35. Ling, G. N., and Negendank, W., 1970, The physical state of water in frog muscles, Physiol. Chem. Phys,. 2: 15.Google Scholar
  36. Ling, G. N., Ochsenfeld, M. M., and Karreman, G., 1967, Is the cell membrane a universal rate-limiting barrier to the movement of water between the living cell and its surrounding medium? J..Gen. Physiol. 50: 1807.PubMedCrossRefGoogle Scholar
  37. Ling, G. N., Ochsenfeld, M. M., Walton, C., and Bersinger, T. J., 1980, Mechanism of solute exclusion from cells: The role of protein-water interaction, Psiol. Chem. Phys. 12: 3.Google Scholar
  38. Ling, G. N., and Peterson, K., 1977, A theory of cell swelling in high concentrations of KC1 and other chloride salts, Bull. of Math. Biol. 39: 721.Google Scholar
  39. Ling, G. N., and Sobel, A. M., 1975, The mechanism for the exclusion of sugars from the water in a model of the living cell: The ion-exchange resin: Pore size or water structure? Physiol. Chem. Phys. 7: 415.PubMedGoogle Scholar
  40. Ling, G. N., Walton, C., and Bersinger, T. J., 1980, Reduced solubility of polymer-oriented water for sodium salts, amino acids, and other solutes normally maintained at low levels in living cells, Physiol. Chem. Phys. 12: 111.Google Scholar
  41. Ludwig, C., 1849, Ueber die endosmotischen Aequivalente and die endosmotische Theorie, Z. rationelle Medizin von Henle 8: 1.Google Scholar
  42. Mac Leod, J., and Ponder, E., 1936, Solvent water in the mammalian erythrocytes, J. Physiol. 86: 147.Google Scholar
  43. Mc Mahon, B. C., Hartung, E. J., and Walban, W. J., 1940, Studies in membrane permeability. II. The adsorption of sucrose and two salts on cupric ferrocyanide, Trans. Farad. Soc. 36: 515.CrossRefGoogle Scholar
  44. Mellon, E. F., Korn, A. H,, and Hoover, S. R., 1949, Water absorption of proteins. IV. Effect of physical structure, J. Amer. Chem. Soc. 71: 2761.Google Scholar
  45. Moran, T., 1926, The freezing of gelatin gel, Proc. Roy. Soc. A 112: 30.CrossRefGoogle Scholar
  46. Overton, E., 1902, Beiträge zur allgemeinen Muskel und Nervenphysiologie, Pflügers Arch. ges Physiol. 92: 115.CrossRefGoogle Scholar
  47. Pfeffer, W., 1877, “ Osmitische Untersuchungen, Studien zur Sell Mechanik,” (1st ed.), W. Engelmann, Leipzig.Google Scholar
  48. Rorschach, H. E., Trantham, E. C., Heidorn, D. B., Hazlewood, C. F., Clegg, J. S., Nicklow, R. M., and Wakabayashi, N., this volume. The diffusive motion of protons in pure water, agarose gel and Artemia cysts as measured by quasi-elastic neutron scattering.Google Scholar
  49. Trantham, E. C., Rorschach, H. E., Clegg, J. S., Hazlewood, C. F., and Nicklow, R. M., 1981, QNS measurements on water in biological and model systems, Amer. Inst. Phys. Conf. Proc. 89: 264.Google Scholar
  50. Traube, M., 1867, Experimente zur Theorie des Zellenbildung und Endosmosis, Arch. (Anat. u) Physiol. 87: 165.Google Scholar
  51. Trombitas, C., and Tigyi-Sebes, A., 1979, X-ray microanalysis studies on native myofibrils and mitochondria isolated by microdissection from honey-bee flight muscle, Acta Physiol. Acad. Sci. Hung. 14: 271.Google Scholar
  52. Troshin, A. S., 1966, “ Problems of Cell Permeability,” (English transi. by M. G. Hall) ( W. F. Widdas, ed.) Pergamon Press, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Gilbert N. Ling
    • 1
  1. 1.Department of Molecular BiologyPennsylvania HospitalPhiladelphiaUSA

Personalised recommendations