Metal Ion Effect on Molecule Sizes and Intramolecular Interaction in DNA

  • S. V. Kornilova
  • Yu. P. Blagoy
  • A. G. Shkorbatov


The study of metal ion effects on the structure and conformational stability of DNA is an important problem of the nuclear acid physics connected with biological functions of DNA-macromolecules. As shown by a number of viscometric studies[1–3], the addition of bivalent metal ions at very small concentrations cause a considerable reduction of intrinsic viscosity of DNA [η]. In this paper we study the effect of Mn2+ and Cu2+ ions on DNA of high (~ 107) and low (~ 105) molecular weight in solutions of different ionic strength. Concentration dependences are calculated for the excluded volume parameter (ɛ), segment interaction parameter (Z) and expanding coefficient (α) for DNA macromolecules. These dependences permit one to judge upon the contributions of the electrostatic long- and short-range effects characterized by the values of ɛ and statistical segment A during the DNA interaction with metal ions. The effect of different degrees of ion binding (τ) upon DNA intrinsic viscosity is analysed in terms of the theory of equilibrium ion-DNA binding. This approach may prove efficient in estimating the ion-DNA constants from experimental results on viscosity.


Electron Paramagnetic Resonance Intrinsic Viscosity Fuzzy Sphere Statistical Segment Exclude Volume Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Baxter-Gabbard and D. Freser, The Effects of Cations and Diamines on the Viscosity of T2 DNA, Biopolymers, 13: 207 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    M. Daune, Interactions of Metal Ions with Nucleic Acids, Metal.Ion.Biol.Syst., 3: 1 (1974).Google Scholar
  3. 3.
    C. K. Pillai and V. S. Nandi, Binding of Gold (III) with DNA, Biopolymers, 12: 1431 (1914).CrossRefGoogle Scholar
  4. 4.
    B. N. Zimm and D. M. Crothers, Simplified Rotating Cylinder Viscometer for DNA, Proc.Nat.Acad.Sci.USA, 48: 905 (1962).PubMedCrossRefGoogle Scholar
  5. 5.
    O. H. Lowry, N. Rosebrough, A. Farr, and R. Randall, Protein Measurement with the Folin Phenol Reagent, J.Biol.Chem., 193: 265 (1951).PubMedGoogle Scholar
  6. 6.
    J. Eigner and P. Doty, The Native, Denatured and Renatured States of Deoxyribonucleic Acid, J.Mol.Biol., 12: 549 (1965).PubMedCrossRefGoogle Scholar
  7. 7.
    A. V. Shugalii and A. B. Fonarev, On the Application of DNA Sonication in Study of Reassociation Kinetics, Biochimia, 40: 598 (1975).Google Scholar
  8. 8.
    Yu.P. Blagoy, S. V. Kornilova, and V. I. Sokhan, Study of Chaging Chaaacteristic Viscosity of DNA Interacting with Cu2 and Mn2 Ions, Molekularnaya Biologia, 16: 210 (1982).Google Scholar
  9. 9.
    S. V. Slonitskii, E. V. Frisman, A. K. Valeev, A. E. Eliashevich, and A. M. Valeev, Intrinsic Viscosity Evaluation of Synthetic and Biological Polyelectrolytes of Different Stiffness, Molekularnaya Biologia, 14: 484 (1980).Google Scholar
  10. 10.
    M. Fixman, Polyelectrolytes: A Fuzzy Sphere Model, J.Chem.Phys., 41: 3772 (1964).CrossRefGoogle Scholar
  11. 11.
    J. Reuben and E. Gabby, Binding of Manganese (II) to DNA and the Competitive Effects of Metal Ions and Organic Cations. An Electron Paramagnetic Resonance Study, Biochemistry, 14: 1230 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Clement, J. Sturn, and M. Daune, Interaction Metallic Cations with DNA. VI. Specific Binding of Mn2 and Mg, Biopolymers, 12: 405 (1973).CrossRefGoogle Scholar
  13. 13.
    Yu.P. Blagoy, V. Sorokin, V. Valeev, and G. Gladchenko, Bivalent Copper Ion Effect on Thermal DNA Denaturation, Molekularnaya Biologia, 12: 795 (1978).Google Scholar
  14. 14.
    S. V. Slonitskii and E. V. Frisman, Ionic Strength Effect on the Thermodynamical Stiffness of DNA Molecule in Aqueous and Aqueous-Organic Solvents, Molekularnaya Biologia, 14: 496 (1980).Google Scholar
  15. 15.
    P. J. Hagerman, Investigation of the Flexibility of DNA using Transient Electric Birefrigence, Biopolymers, 20: 1503 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Yamakawa and M. Fujii, Intrinsic Viscosity of Worm-like Chains. Determination of the Shift Factor, Macromolecules, 7: 128 (1974).PubMedCrossRefGoogle Scholar
  17. 17.
    O. B. Ptitsyn and Yu. E. Eizner, Hydrodynamic of Polymer Solutions. II Hydrodynamic Properties of Macromolecules in Good Solvents, Zhurn.Techn.Fiz., 29: 1117 (1959).Google Scholar
  18. 18.
    I. M. Lifshits, A. Yu. Grosberg, and A. R. Khokhlov, Volume Interactions in the Statistical Physics of a Polymer Macromolecule, Uspekhi Fiz.Nauk, 127: 353 (1979).CrossRefGoogle Scholar
  19. 19.
    B. A. Fedorov, Theory of Small-Angle X-Ray Scattering of Compact Macromolecules in Solution, Branched Gauss Chains, Vysokomolekularnye Soedinenia, 12-A: 810 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • S. V. Kornilova
    • 1
  • Yu. P. Blagoy
    • 1
  • A. G. Shkorbatov
    • 1
  1. 1.Physico-Technical Institute of Low TemperaturesUkrainian Academy of SciencesKharkovUSSR

Personalised recommendations