Skip to main content
  • 142 Accesses

Abstract

Several biologically active compounds are capable of forming intermolecular non-covalent complexes with deoxyribonucleic acid (DNA) under free energy changes of less than 40 kJ/mol (approximately 10 kcal/mol)[1–4]. These complexes are in the first place investigated on isolated DNA. There is, however, indication that they are also present in biological systems, where the nucleic acids exist in their natural state[5,6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Blake and A. R. Peacocke, The interactions of aminoacridines with nucleic acids, Biopolymers 6: 1225 (1968).

    Article  PubMed  CAS  Google Scholar 

  2. G. Löber, On the complex formation of acridine dyes with DNA- IV. The equilibrium constants of substituted proflavine and acridine orange derivatives, Photochem.Photobiol. 8: 23 (1968).

    Article  Google Scholar 

  3. G. Löber and G. Achtert, On the complex formation of acridine dyes with DNA-VII. Dependence of the binding on the dye structure, Biopolymers 8: 595 (1969).

    Google Scholar 

  4. G. Löber, Zur Komplexbindung von Farbstoffen mit Desoxyribonucleinsäuren, Z.Chem. 9: 252 (1969).

    Article  Google Scholar 

  5. G. Löber, W. Fleck, H.-E. Jacob, and K. Rost, Beziehungen zwischen der Komplexbindung mit DNS und einigen biologischen Wirkungen von Acridinfarbstoffen, in Wirkungsmechanismen von Fungiziden, Antibiotika und Cytostatika, H. Lyr and W. Rawald, eds., Akademie-Verlag, Berlin (1970) p. 39.

    Google Scholar 

  6. G. Löber, Acridine - ihre physikochemische und biochemische Bedeutung. Eine Betrachtung anläßlich der Entdeckung des Acridins vor 100 Jahren. Teil II. Z.Chem. 11: 135 (1971).

    Article  Google Scholar 

  7. G. Löber, and L. Kittler, Selected topics in photochemistry of nucleic acids, Recent results and perspectives, Photochem.Photobiol. 25: 215 (1977).

    Article  PubMed  Google Scholar 

  8. G. Löber, The fluorescence of dye-nucleic acid complexes. J.Luminescence 22: 221 (1981).

    Article  Google Scholar 

  9. Z. Balcarovä, V. Kleinwächter, J. Koudelka, G. Löber, K. E. Reinert, L. P. G. Wakelin, and M. J. Waring, Interaction of phenosafranine with nucleic acids and model polyphosphates. II. Characterization of phenosafranine binding to DNA. Biophys.Chem. 8: 27 (1978).

    Google Scholar 

  10. G. Löber, L. Kittler, R. Klarner, Z. Hradecna, V. Kleinwächter, Z. Balcarovâ, M. Skalka, J. Koudelka, E. Smdkal, L. Popa and V. Beensen, DNA-drug interactions (A minireview). Studia biophysica 88: 1 (1982).

    Google Scholar 

  11. G. Löber, H. Schütz, and V. Kleinwächter, Effect of organic solvents on the properties of the complexes of DNA with proflavine and similar compounds. Biopolymers 11: 2439 (1972).

    Article  PubMed  Google Scholar 

  12. T. T. Herskovits, Nonaqueous solution of DNA: factors determining the stability of the helical configuration in solution. Arch.biochem.Biophys. 97: 474 (1962).

    Article  CAS  Google Scholar 

  13. V. Kleinwchter and J. Koudelka, Thermal denaturation of deoxyribonucleic acid acridine orange complex. Biochim. Biophys.Acta 91:539 (1964).

    Google Scholar 

  14. G. Löber, R. Klarner, E. Smékal, T. Räim, Z. Balcarovâ, J. Koudelka, and V. Kleinwächter, Spectroscopic investigations on the interaction of the anthracycline antibiotic violamycin BI with deoxyribonucleic acid, Int.J.Biochem. 15: 663–673 (1983).

    Article  PubMed  Google Scholar 

  15. U. Katenkamp, E. Stutter, I. Petri, F. A. Gollmick, and H. Berg, Interaction of authracyline antibiotics with biopolymers. VIII. Binding parameters of aclacinomycin A to DNA. J.Antibiotics 36: 1222–1227 (1983).

    Article  CAS  Google Scholar 

  16. G. Löber, V. Kleinwächter, J. Koudelka, and E. Smékal, On spectral properties of type I complexes of dyes with deoxyribonucleic acid and human serum albumin. Studia biophysica 45: 91 (1974).

    Google Scholar 

  17. H. Lang and G. Löber, Die Lösungsmittelabhängigkeit der Elektronenspektren von kationischen Acridinfarbstoffen, Ber.Bunsenges.physik.Chem. 73: 710 (1969).

    CAS  Google Scholar 

  18. G. Löber, and V. Kleinwächter, Effect of organic solvents on the properties of the complex polyphosphate-acridine orange (preliminary note), Studia biophysica 33: 73 (1972).

    Google Scholar 

  19. G. Löber, V. Kleinwächter, and H. Berg, Effect of organic solvents on the properties of the complexes of a polyphosphate with acridines, Studia biophysica 35: 29 (1973).

    Google Scholar 

  20. G. Löber, V. Kleinwächter, and J. Koudelka, Staining of chromosomes with basic dyes, Studia biophysica 55: 49 (1976).

    Google Scholar 

  21. G. Löber, V. Kleinwächter, J. Koudelka, Z. Balcarovâ, J. Filkuka, P. Krejci, P. Döbel, V. Beensen, and R. Rieger, Molecular and spectroscopic aspects of chromosome banding, Biol.Zbl. 95: 169 (1976).

    Google Scholar 

  22. G. Löber, V. Beensen, Ch. Zimmer, and H. Hanschmann, Changes of quinacrine staining of human chromosomes by the competitive binding of A.T and G.C-specific substances, Studia biophysica 69: 237 (1978).

    Google Scholar 

  23. G. Löber, On the spectroscopic basis of acridine-induced fluorescence banding patterns in chromosomes. Studia bio physica 48: 109 (1975).

    Google Scholar 

  24. C. J. Seliskar and L. Brand, Electronic spectra of 1 aminonaphthalene-6-sulfonate and related molecules, J.Am. Chem.Soc. 93: 5414 (1971).

    Article  CAS  Google Scholar 

  25. R. D. G. McKay, The mechanism of G- and C-banding in mammalian metaphase chromosomes. Chromosome (Berlin) 44: 1 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Löber, G., Klarner, R. (1985). Water and DNA-Drug Interaction. In: Pullman, A., Vasilescu, V., Packer, L. (eds) Water and Ions in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0424-9_74

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0424-9_74

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0426-3

  • Online ISBN: 978-1-4899-0424-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics