Erythrocytes in Alternating Electric Fields

  • Vasile V. Morariu
  • Alexandra Chifu
  • Titus Simplaceanu
  • Petre T. Frangopol


Cells exposed to relatively mild alternating field intensities of the order of hundreds of volts per centimeter show the phenomenon known as dielectrophoresis. This is the displacement of the cells towards regions of higher field intensities. When a few short pulses of higher field intensities w1re applied, fusion of the cells or lysis was demonstrated to occur2,3.


Field Intensity Charge Separation Inelastic Deformation Interfacial Polarization High Field Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. A. Pohl, “Dielectrophoresis”, Cambridge University Press, London and New York (1979).Google Scholar
  2. 2.
    U. Zimmermann, P. Scheurich, G. Pilwat and R. Benz, Cells with manipulated functions: new perspectives for cell biology, medicine, and technology, Angew. Chem. Int. Ed. Engl., 20: 325 (1981).CrossRefGoogle Scholar
  3. 3.
    U. Zimmermann and J. Vienken, Electric field-induced cell-tocell fusion, J. Membrane Biol., 67: 165 (1982).CrossRefGoogle Scholar
  4. 4.
    J. Unger and G. Geyer, CDM-Untersuchungen an Erythrocyten. II. Methodologische Grundlagen, Wiss. Z. FSU Jena, Math.naturwiss. R., 26: 521 (1977).Google Scholar
  5. 5.
    G. Geyer, K. J. Halbhuber, D. Stibenz, C. Scheven, J. Unger, A. Benser, R. Fröber, J. Makovitzky, D. Geiling and H. G. Geiling, Alteration by procaine of spectrin cross-links, deformability, and fluidity related properties of the erythrocyte membrane, Folia Haematol. Leipzig, 107: 472 (1980).Google Scholar
  6. 6.
    A. W. L. Jay, Viscoelastic properties of the human red blood cell membrane. I. Deformation, volume loss, and rupture of red cells in micropipettes, Biophys. J., 13: 1166 (1973).Google Scholar
  7. 7.
    H. Schmid-Schönbein, Blood rheology and physiology of micro-circulation, in “Research in Clinic and Laboratory”, vol. XI, Supplement No 1, p. 13–33.Google Scholar
  8. 8.
    C. Holzapfel, J. Vienken and U. Zimmermann, Rotation of cells in an alternating electric field: theory and experimental proof, J. Membrane Biol., 67: 13 (1982).CrossRefGoogle Scholar
  9. 9.
    H. P. Schwan, Dielectric properties of biological tissues and biophysical mechanisms of electromagnetic field interaction, in ACS Symposium Series No 157, “Biological Effects of Nonionizing Radiation”, Karl H. Illinger, Editor, (1981).Google Scholar
  10. 10.
    H. H. Hub, H. Ringsdorf and U. Zimmermann, Rotation of polymerized vesicles in an alternating electric field, Angew. Chem. Int. Ed. Engl., 21: 134 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Vasile V. Morariu
    • 1
  • Alexandra Chifu
    • 1
  • Titus Simplaceanu
    • 1
  • Petre T. Frangopol
    • 2
  1. 1.Institute of Isotopic and Molecular TechnologyCluj-NapocaRomania
  2. 2.Institute of Physics and Nuclear EngineeringMagurele-BucurestiRomania

Personalised recommendations