Advertisement

NMR Studies of the Role of Intracellular Sodium Ions in the Mechanism of Insulin Action on an Amphibian Oocyte

  • Raj K. Gupta
  • Adele B. Kostellow
  • Gene A. Morrill

Abstract

NMR spectroscopy provides a noninvasive technique for the study of 23Na ions in living cells and tissues, permitting a direct observation of the cations via their own resonance absorption [1–10]. Rana oocytes constitute a particularly favorable cellular system for NMR study. A Rana female contains up to 2–3 thousand large (1.8 mm diameter) oocytes arrested in first meiotic prophase. Interestingly, insulin can release the block at prophase arrest in the amphibian oocyte and reinitiate the meiotic divisions in vitro, although its physiological role in vivo remains unclear. Insulin action on the plasma membrane causes a rapid change in ion permeability and electrical properties and we have arried out measurements to determine its effect on intracellular Na+ concentration [6,7].

Keywords

Meiotic Division None None Cell Water Shift Reagent Free Induction Decay Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. W. Cope, J. Gen. Physiol. 50: 1353 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    M. M. Civan and M. Shporer, Biol. Magn. Reson. 1: 1 (1978).CrossRefGoogle Scholar
  3. 3.
    R. K. Gupta and P. Gupta, J. Mag. Res. 47: 344 (1982).Google Scholar
  4. 4.
    R. K. Gupta, P. Gupta, and W. Negendank, in: “Ions, Cell Proliferation and Cancer,” A. L. Boynton, W. L. McKeehan, and J. E. Whitfield, eds., Academic Press, N.Y., p. 1 (1982).Google Scholar
  5. 5.
    R. K. Gupta, P. Gupta, and R. D. Moore, Annu. Rev. Biophys. Bioeng. 13: 221 (1984).CrossRefGoogle Scholar
  6. 6.
    G. A. Morrill, A. B. Kostellow, S. P. Weinstein, and R. K. Gupta, Physiol. Chem. Phys. Med. NMR 15: 357 (1983).Google Scholar
  7. 7.
    G. A. Morrill, A. B. Kostellow, S. P. Weinstein, and R. K. Gupta, Biochim. Biophys. Acta, in press (1985).Google Scholar
  8. 8.
    R. K. Gupta, A. B. Kostellow, and G. A. Morrill, J. Biol. Chem., in press (1985).Google Scholar
  9. 9.
    B. A. Wittenberg and R. K. Gupta, J. Biol. Chem. 260: 2031 (1985).PubMedGoogle Scholar
  10. 10.
    B. M. Rayson and R. K. Gupta, J. Biol. Chem., in press (1985).Google Scholar
  11. 11.
    D. H. Ziegler and G. A. Morrill, Develop. Biol. 60: 318 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    G. A. Morrill and D. H. Ziegler, Develop. Biol. 74: 216 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    G. A. Morrill, D. H. Ziegler, and V. S. Zabrenetsky, J. Cell Sci. 26: 311 (1977).PubMedGoogle Scholar
  14. 14.
    R. K. Gupta and R. D. Moore, J. Biol. Chem. 255: 3987 (1980).PubMedGoogle Scholar
  15. 15.
    R. D. Moore and R. K. Gupta, Int. J. Quant. Chem. Quant. Biol. Symp. 7: 83 (1980).Google Scholar
  16. 16.
    G. A. Morrill, A. B. Kostellow, S. Mahajan, and R. K. Gupta, Biochim. Biophys. Acta 804: 107 (1984).CrossRefGoogle Scholar
  17. 17.
    L. Jarett and J. T. Seals, Science 206: 1407 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Larner, G. Galasko, K. Cheng, A. DePaoli-Roach, L. Huang, P. Daggy, and J. Kellogg, Science 206: 1408 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Larner, K. Cheng, C. Schartz, K. Kikuchi, S. Creacy, R. Dubler, G. Galasko, C. Pullin, and M. Katz, Fed. Proc. 41: 2724 (1982).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Raj K. Gupta
    • 1
  • Adele B. Kostellow
    • 1
  • Gene A. Morrill
    • 1
  1. 1.Department of Physiology & BiophysicsAlbert Einstein College of MedicineNew YorkUSA

Personalised recommendations