Two Distinct Orders in Agarose Biostructural Gels : Transition Kinetics and the Role of Temperature and Isotopic Substitution

  • M. Leone
  • S. L. Fornili
  • M. B. Palma-Vittorelli

Abstract

Aqueous agarose systems have been the object of much attention1–4 as a consequence of their ability to form structural gels of high biological and practical interest. Thermoreversibility and hysterical behaviour of sol-gel transitions in these systems offer a further point of interest, since they evidence the existence of marked cooperative effects in the formation/ recognition/ aggregation/ stabilization of molecular and supramolecular patterns. Understanding the underlying physical processes may have very wide implications. In these systems gelation occurs already at a polysaccharide concentration of a fraction of a % w/v through the formation of a molecular order (double helices) and a supramolecular order (bundles)1.

Keywords

Methylene Blue Solitary Wave Correlation Length Isotopic Substitution Apparent Optical Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.C.M. Dea, A.A. Mc Kinnon and D.A. Rees, Tertiary and Quaternary Structure in Aqueous Polysaccharide Systems, J.Mol.Biol. 68: 153 (1972)PubMedCrossRefGoogle Scholar
  2. D.S. Reid, T.A. Bryce, A.H. Clark and D.A. Rees, Helix-Coil Transition in Gelling Polysaccharides, Faraday Discuss.Chem.Soc. 57: 230 (1974)CrossRefGoogle Scholar
  3. S. Arnott, A. Fulmer, W.E. Scott, I.C.M. Dea, R. Moorhouse and D.A. Rees, The Agarose Double Helix and Its Function in Agarose Gel Structure, J.Mol.Biol. 90: 269 (1974)PubMedCrossRefGoogle Scholar
  4. 2.
    P.L. Indovina, E. Tettamanti, M.S. Micciancio-Giammarinaro and M.U. Palma, Thermal Hysteresis and Reversibility of Sol-Gel Transition in.Agarose-Water Systems, J.Chem.Phys. 70: 2841 (1979)CrossRefGoogle Scholar
  5. G. Vento, M.U. Palma and P.L. Indovina, Concentration and Isotope Effects in the Stability of Agarose Gel, Ibid. 70: 2848 (1979)Google Scholar
  6. 3.
    A. Hayashi, K. Kinoshita and M. Kuwano, Studies of the Agarose Gelling Systems by the Fluorescence Polarization Method. Part I, Polym.J. 9: 219 (1977)CrossRefGoogle Scholar
  7. A. Hayashi, K. Kinoshita, M. Kuwano and A. Nose, id. Part II, Ibid. 10: 485 (1978)Google Scholar
  8. A. Hayashi, K. Kinoshita and S. Yasueda, id. Part III, Ibid. 12: 447 (1980).Google Scholar
  9. 4.
    J.D. Aplin and L.D. Hall, Spin-Labelling Studies of the Agarose Gelling Systems, Carbohydr.Res. 75: 17 (1979)CrossRefGoogle Scholar
  10. 5.
    C. Mandal, N.R. Kallenbach and W. Englander, Base-Pair Opening and Closing Reactions in the Double Helix, J.Mol.Biol. 135: 391 (1979)PubMedCrossRefGoogle Scholar
  11. S.W. Englander, N.R. Kallenbach, A.J. Heeger, J.A. Krumhansl and S. Litwin, Nature of the Open State in Long Polynucleotide Double Helices: Possibility of Soliton Excitations, Proc.Natl.Acad.Sci.(USA) 77: 7222 (1980)CrossRefGoogle Scholar
  12. 6.
    A. Cupane, E. Vitrano, P.L. San Biagio, F. Madonia and M.U. Palma, Thermal Stability of Poly(A) and Poly(U) Complexes in H90 and D20: Isotopic Effects on Critical Temperatures and transition, Nucl.Acid.Res. 8: 4283 (1980)CrossRefGoogle Scholar
  13. 7.
    M.U. Palma, Isotope Effects and Collective Excitations, in: “Excitations in Biological Systems”,F. Kremer, ed., Springer Verlag, Berlin (to appear)Google Scholar
  14. 8.
    E. Clementi and G. Corongiu, Solvation of DNA at 300 K: Computer Experiment, in: “Biomolecular Stereodynamics” vol. I, R.H. Sarma, ed., Adenine Press, New York (1981)Google Scholar
  15. 9.
    M. Spodheim and E. Neumann, Kinetic Analysis of the Annealing Period in the Formation of the Poly(A).2Poly(U) Triple Helix, Biopolymers 16: 289 (1977)PubMedCrossRefGoogle Scholar
  16. 10.
    S.L. Fornili and M. Migliore, Microcomputer-Based System for Automation of Spectrophotometric Data Acquisition for Long Lasting Kinetics, J.Phys.E.:Sci.Instrum. 14: 426 (1981)CrossRefGoogle Scholar
  17. 11.
    M. Leone, S.L. Fornili and M.B. Palma-Vittorelli, to be publishedGoogle Scholar
  18. 12.
    S.L. Fornili, G. Sgroi and V. Izzo, Solvent Isotope Effect in the Monomer-Dimer Equilibrium of Methylene Blue, J.Chem.Soc. 77: 3049 (1981)Google Scholar
  19. 13.
    M.U. Palma, Internal Dynamics of Biomolecules in Solution, in: “Structure and Dynamics: Nucleic Acids and Protein” E. Clementi and R.H. Sharma, eds., Adenine Press, New York (1983)Google Scholar
  20. 14.
    F. Franks, ed.,: “Water, a Comprehensive Treatise”, Plenum Press, New York (seven volumes, 1972–1982)Google Scholar
  21. 15.
    F.H. Stillinger, Water Revisited, Science 209: 451 (1980)PubMedCrossRefGoogle Scholar
  22. 16.
    G. Aiello, M.S. Giammarinaro, M.B. Palma-Vittorelli and M.U. Palma, Behaviour of Interacting Protons: The Average Mass Approach to its Studies and Possible Biological Relevance, in: “Cooperative Phenomena”, H. Haken and M. Wagner, eds., Springer-Verlag, Berlin (1973)Google Scholar
  23. 17.
    V. Izzo, S.L. Fornili and L. Cordone, Thermal Denaturation of B. Subtilis DNA in H22O and D20 Observed by Electron Microscopy, Nucl.Acid.Res. 2: 1805 (1975)CrossRefGoogle Scholar
  24. 18.
    M. Migliore, M. Leone and M.B. Palma-Vittorelli, to be publishedGoogle Scholar
  25. 19.
    P.J. Flory, “Principles of Polymer Chemistry”, Cornell University, Ithaca, N.Y. (1953)Google Scholar
  26. 20.
    W.H. Stockamayer, Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers, J.Chem.Phys., 11: 45 (1943)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • M. Leone
    • 1
  • S. L. Fornili
    • 1
  • M. B. Palma-Vittorelli
    • 1
  1. 1.Istituto di Fisica dell’Universita’ and C.N.R.Gruppo Nazionale Struttura della MateriaPalermoItaly

Personalised recommendations