Advertisement

The Role of Calcium Ions in the Conformational Changes of Troponin

  • Kozo Nagano

Abstract

This paper aims to propose a new 3-dimensional model of troponin C, which can explain as many experimental observations on thin filaments in vertebrate striated muscles as possible. Thin filaments are composed of F-actin, tropomyosin (TM) and troponin. TM is believed to be a double-stranded coiled-coil.1 Troponin consists of 3 components; Ca binding troponin C (TnC), actin-myosin interaction inhibiting troponin I (TnI), and TM binding troponin T (TnT).2 The N-terminal fragment of TnT, viz. T1, is mostly covered by troponins C and I, while the C-terminal fragment of TnT, viz. T2, is more exposed and situated at the N-terminal side of TM.34 Troponins C and I are both exposed, but it was not determined by immunoelectron microscopy on which side is actually TnC. The length of TnT is estimated to be longer than 90Å.

Keywords

Thin Filament High Affinity Site Actomyosin ATPase Turn Region Actomyosin ATPase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. McLachlan and M. Stewart, The 14-fold periodicity in atropomyosin with actin, J. Mol. Biol. 103: 271 (1974).CrossRefGoogle Scholar
  2. 2.
    S. Ebashi, Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system, Essays in Biochemistry 10:1 (1971).Google Scholar
  3. 3.
    I. Ohtsuki, Molecular Arrangement of troponin-T in the thin filament, J. Biochem. 86: 491 (1979).PubMedGoogle Scholar
  4. 4.
    I. Ohtsuki, Functional organization of the troponin-tropomyosin system, in:“Muscle Contraction: Its Regulatory Mechanisms,” S. Ebashi et al. eds., Japan Sci. Soc. Press, Tokyo/Springer -Verlag, Berlin (1980).Google Scholar
  5. 5.
    K. Kohama, Role of the high affinity Ca binding sites of cardiac and fast skeletal troponins, J. Biochem. 88: 591 (1980).PubMedGoogle Scholar
  6. 6.
    Z. Grabarek, W. Drabikowski, P. C. Leavis, S. S. Rosenfeld, and J. Gergely, Proteolytic fragments of troponin C - Interactions with the other troponin subunits and biological activty, J. Biol. Chem. 256; 13121 (1981).PubMedGoogle Scholar
  7. 7.
    P. S. Leavis, S. S. Rosenfeld, J. Gergely, Z. Grabarek, and W. Drabikowski, Proteolytic fragments of troponin C - Localization of high and low affinity Cat+ binding sites and interactions with troponin I and troponin T, J. Biol. Chem. 253: 5452 (1978).PubMedGoogle Scholar
  8. 8.
    G. W. Amphlett, T. C. Vanaman, and S. V. Perry, Effect of the troponin C-like protein from bovine brain (brain modulator protein) on the Mgt+-stimulated ATPase of skeletal muscle actomyosin, FEBS Lett. 72: 163 (1976).Google Scholar
  9. 9.
    K. Nagano, S. Miyamoto, M. Matsumura, and I. Ohtsuki, Possible formation of a triple-stranded coiled-coil region in tropomyosin-troponin T binding complex, J. Mol. Biol. 141: 217 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Nagano, S. Miyamoto, M. Matsumura, and I. Ohtsuki, Prediction of a triple-stranded coiled-coil region in tropomyosintroponin T complex, J. Theor. Biol. 94: 743 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    J.-P. van Eerd,and K. Takahashi, Determination of the complete amino acid sequence of bovine cardiac troponin C, Biochemistry 15: 1171 (1976).CrossRefGoogle Scholar
  12. 12.
    H. Kasai, Y. Kato, T. Isobe, H. Kawasaki, and T. Okuyama, Determination of the complete amino acid sequence of calmodulin (phenylalanine-rich acidic protein II) from bovine brain, Biomed. Res. 1: 248 (1980).Google Scholar
  13. 13.
    D. M. E. Szebenyi, S. K. Obendorf, and K. Moffat, Structure of vitamin D-dependent calcium-binding protein from bovine intestine, Nature 294: 327 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    R. M. Tufty and R. H. Kretsinger, Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme, Science 187: 167 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    R. H. Kretsinger and C. E. Nockolds, Carp muscle calcium-binding protein II. Structure determination and general description, J. Biol. Chem. 248: 3313 (1973).PubMedGoogle Scholar
  16. 16.
    R. H. Kretsinger and C. D. Barry, The predicted structure of the calcium-binding component of troponin, Biochim. Biophys. Acta 405: 40 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Tanokura, Y. Tawada, and I. Ohtsuki, Chymotryptic subfragments of troponin T from rabbit skeletal muscle. I. Determination of the primary structure, J. Biochem. 91: 1257 (1982).PubMedGoogle Scholar
  18. 18.
    I. Ohtsuki and K. Nagano, Molecular arrangement of troponintropomyosin in the thin filament, Adv. Biophys. 15: 93 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    K. Nagano and I. Ohtsuki, Prediction of approximate quaternary structure of troponin complex, Proc. Japan Acad. 58B (3): 73 (1982).CrossRefGoogle Scholar
  20. 20.
    K. Kohama, Divalent cation binding properties of slow skeletal muscle troponin in comparison with those of cardiac and fast skeletal muscle troponins, J. Biochem. 86: 811 (1979).PubMedGoogle Scholar
  21. 21.
    R. E. Reid and R. S. Hodges, Co-operativity and calcium/magnesium binding to troponin C and muscle calcium binding parvalbumin: An hypothesis, J. Theor. Biol. 84: 401 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    B. W. Matthews, The y-turn. Evidence for a new folded conformation in protein, Macromolecules 5: 818 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Kozo Nagano
    • 1
  1. 1.Faculty of Pharmaceutical SciencesUniversity of TokyoTokyo 113Japan

Personalised recommendations