Skip to main content

H+ Gradient Changes: Their Measurement and Their Significance in Cell Stimulation

  • Chapter
Water and Ions in Biological Systems

Abstract

As the sequence of events accompanying cell stimulation and oocyte fertilization becomes better known it has become clear that changes in the membrane potential as well as those in intracellular pH and pCa++ play an important role (1–21)Table I. Some of the possible ion gradient changes in the response of any cell possessing a receptor R for a given specific stimulus S can be depicted pictorially as in Figure 1. Although recognition and binding of the stimulus to its receptor are clearly the initiating steps, the subsequent sequence is not yet clear. Depolarization can be and in some cells has been (19–21) demonstrated to involve an influx of Na+ ions. While there is some evidence that an accompanying H+ outflow may be attributable to the stimulus induced opening of an Na+-H+ antiport as depicted in Figure 1 (13,19), the temporal resolution has not been sufficiently great to allow one to conclude that the Na+ and H+ flux changes are simultaneous rather than sequential. A Na+ influx undoubtedly stimulates a Na+-K+ ATPase in many types of cells (22), as well as a release of Ca++ from the membrane into the cytoplasm (23). Whether these changes in intracellular cation concentrations trigger membrane-bound enzymes (e.g. the lipases initiating the prostaglandin synthesis pathway in platelets (24)), enhance metabolic activity (25), act as signals for the fusion of organelles with the membrane or have other effects as “secondary” messengers remains the object of a number of studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions.“ R. Nuccitelli and D.W. Deamer, eds., Alan R. Liss, Inc., New York (1982).

    Google Scholar 

  2. D. Epel, Mechanisms of Activation of Sperm and Egg during Fertilization of Sea Urchin Gametes, Curr. Top. Dev. Biol. 12: 186–246 (1978).

    Google Scholar 

  3. A. Roos, and W.F. Boron, Intracellar H., Physiol. Rev. 61: 297–434 (1981).

    Google Scholar 

  4. R.J. Gillies, “Intracellular pH and Growth Control in Eukaryotic Cells” in “The Transformed Cell,” I. Cameron, ed., Academic Press, New York 91981 ).

    Google Scholar 

  5. J.D. Johnson, D. Epel, and M. Paul, Intracellular pH and activation of sea urchin eggs after fertilization, Nature 262: 611–664 (1976).

    Google Scholar 

  6. S.S. Shen, and R.A. Steinhardt, Measurement of Intracellular pH during Metabolic Depression of the Sea Urchin Egg, Nature 272: 253–254 (1978).

    Article  PubMed  CAS  Google Scholar 

  7. M.M. Winkler, and J.L. Grainger, Mechanism of Action of NH4cl and Other Weak Bases in Activation of Sea Urchin Eggs, Nature 238–538 (1978).

    Google Scholar 

  8. T. Finkel, and D.P. Wolf, Membrane Potential, pH and the Activation of Surf Clam Oocytes, Gamete Research 3: 299–304 (1980)

    Article  CAS  Google Scholar 

  9. R. Nuccitelli, D.J. Webb, S.T. Lagier, and G.B. Watson, 31P NMR Reveals an Increase in Intracellular pH after Fertilization in Xenopus Eggs, Proc. Natl. Acad. Sci. USA 78: 4421–4425 (1981).

    Article  PubMed  CAS  Google Scholar 

  10. R.D. Moore, Elevation of Intracellular pH by Insulin in Frog Skeletal Muscle, Biochem. Biophys. Res. Commun. 91: 900–904 (1979)

    Article  PubMed  CAS  Google Scholar 

  11. S. Lee, and R.A. Steinhardt, Observations on Intracellular pH during Cleavage of Eggs of Xenopus Laeirs, J. Cell Biol. 91: 414–419 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. R.D. Moore, Stimulation of NaiH Exchange by Insulin, Biophys. J. 33: 203–210 (1981).

    Article  PubMed  Google Scholar 

  13. W.C. Horne, N.E. Norman, D.B. Schwartz, E.R. Simons, Changes in Cytoplasmic pH and in Membrane Potential in Thrombin-Stimulated Human Platelets, Eur. J. Biochem. 120: 295–302 (1981).

    Article  PubMed  CAS  Google Scholar 

  14. D.F. Gerson, H. Kiefer, and W. Eufe, Intracellular pH of Mitogen-Stimulated Lymphocytes, Science 216: 1009–1010 (1982).

    Article  PubMed  CAS  Google Scholar 

  15. D.F. Gerson, and H. Kiefer, High Intracellular pH Accompanies Mitotic Activity in Murine Lymphocytes, J. Cell Physiol. 112: 1–4 (1982).

    Article  PubMed  CAS  Google Scholar 

  16. J.M. Heiple, and D.L. Taylor, pH Changes in Pinosomes and Phagosomes in the Ameba Choas Carolinensis, J. Cell Biol. 94: 143–149 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. B. Setlow, and P. Setlow, Measurements of the pH within Dormant and Germinated Bacterial Spores, Proc. Natl. Acad. Sci. USA 77: 2774–2776 (1980).

    Article  Google Scholar 

  18. E. Shechter, L. Letellier, and E.R. Simons, Fluorescence Dye as a Monitor of Internal pH in Escherichia Coli Cells, FEBS Letters, 139, 121–124 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. W.C. Horne, and E.R. Simons, Effects of Amiloride on the Response of Human Platelets to Bovine Thrombin, Thrombos. Res. 13: 599–607 (1979).

    Article  Google Scholar 

  20. R.I. Sha’afi, T.F.P. Molski, and P.H. Naccache, Chemotactic Factors Activate Differentiable Permeation. Pathways for Nat and Ca++ in Rabbit Neutrophils, Biochem. Biophys. Res. Commun. 99: 1271–1276 (1980).

    Article  Google Scholar 

  21. T.F.P. Molski, P.H. Naccache, M. Volpi, L.M. Wolpert, and R.I. Sha’afi, Specific Modulation of the Intracellular pH of Rabbit Neutrophils by Chemotactic Factors, Biochem. Biophys. Res. Commun. 508: 514 (1980).

    Google Scholar 

  22. E.W. Salzman, Some Basic Mechanisms in Platelet Physiology, Sem. Haemat. 8: 3–49 (1976).

    Google Scholar 

  23. N.E. Owen, and G.C. LeBreton, Ca++ Mobilization in Blood Platelets as Visualized by Chlortetracycline Fluorescence, Am. J. Physiol. 241: H613–619 (1981).

    PubMed  CAS  Google Scholar 

  24. M.J. Broekman, J.W. Ward, and A.J. Marcus, Phospholipid Metabolism in Stimulated Human Platelets, J. Clin. Invest. 66: 275–283 (1980).

    Article  PubMed  CAS  Google Scholar 

  25. H. Holmsen, C.A. Setkowsky, and H.J. Day, Effects of ant;imycin and 2: deoxygluc ose on Adenine Nucleotides in Human Platelets. Role of Metabolic ATP in Primary Aggregation, Secondary Aggregation and Shape Change of Platelets, Biochem. J. 144: 385–396 (1974).

    PubMed  CAS  Google Scholar 

  26. N.E. Larsen, and E.R. Simons, Preparation and Application of a Photoreactive Thrombin Analogue: Binding to Human Platelets, Biochem. 20: 4141–4147 (1981).

    Article  CAS  Google Scholar 

  27. B.E. Seligman, J.I. Gallin, Use of Lipophilic Probes of Membrane Potential to Assess Human Neutrophil Activation. J. Clin. Invest. 66: 493–503 (1980).

    Article  Google Scholar 

  28. H.M. Korchak, and G. Weissman, Changes in Membrane Potential of Human Granulocytes Antecede the Metabolic Responses to Surface Stimulation, Proc. Natl. Acad. Sci. USA 75: 3818–3822 (1978).

    Article  PubMed  CAS  Google Scholar 

  29. K. Utsumi, K. Sugiyamam, M. Miyahara, M, Naito, M. Awai, and M. Inone, Effect of Concanavalin A on Membrane Potential of Polymorphonuclear Leukocytes Monitored by Fluorescent Dye, Cell Struct. Func. 2: 203–209 (1977).

    Article  CAS  Google Scholar 

  30. J.C. Whitin, C.E. Chapman, E.R. Simons, M.E. Chovaniec, and H.J. Cohen, Correlation Between Membrane Potential Changes and Superoxide Production in Human Granulocytes Stimulated by Phorbol Myristate Acetate, J. Biol. Chem. 255: 1874–1878 (1980).

    PubMed  CAS  Google Scholar 

  31. J.C. Whitin, R.A. Clark, E.R. Simons, and H.J. Cohen, Effects of the Myeloperoxidase System on Fluorescent Probes of Granulocyte Membrane Potential. J. Biol. Chem. 256: 89048906 (1981).

    Google Scholar 

  32. H.J. Cohen, P.E. Newburger, M.E. Chovaniec, J.C. Whitin, and E.R. Simons, Opsonized Zymosan: Stimulated Granulocytes-Activation and Activity of the Superoxide-Generating System and Membrane Potential Changes, Blood 58: 975–981 (1981).

    PubMed  CAS  Google Scholar 

  33. G.S. Jones, K. Van Dyke, and V. Castrovana, Transmembrane Potentials Associated with Superoxide Release from Human Granulocytes. J. Cell Physiol. 106: 75–83 (1981).

    Article  PubMed  CAS  Google Scholar 

  34. J.C. Freedman, and J.F. Hoffman, The Relation Between Dicarbocyanine Dye Fluorescence and the Membrane Potential of Human Red Blood Cells Set at Varying Donnan Equilibria, J. Gen. Physiol. 74: 187–212 (1979).

    Article  PubMed  CAS  Google Scholar 

  35. J.C. Freedman, and J. Hoffman, Ionic and Osmotic Equilibria of Human Red Blood Cells Treated with Nystatin, J. Gen. Physiol. 74: 157–185 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. J.W.N. Akkerman, R.H.M. Ebberink, J.P.M. Lips, and G.C. Christiaens, Rapid Separation of Cytosol and Particle Fraction of Human Platelets, Br. J. Haematol. 44: 291–297 (1980).

    Article  PubMed  CAS  Google Scholar 

  37. P.J. Sims, A.S. Waggoner, C.-H. Wang, and J. Hoffman, Studies on the Mechanism by which Cyanine Dyes Measure Membrane Potential in Red Blood Cells and Phosphatidylcholine Vesicles, Biochem. 13: 3315–3330 (1974).

    Article  CAS  Google Scholar 

  38. A. Waggoner, Optical Probes of Membrane Potential, J. Memb. Biol. 27: 317–334 (1976).

    Article  CAS  Google Scholar 

  39. A. Waggoner, Dye Indicators of Membrane Potential, Ann. Rev. Biophys. Bioeng. 8: 47–68 (1979).

    Article  CAS  Google Scholar 

  40. W.C. Horne, and E.R. Simons. Probes of Transmembrane Potentials in Platelets: Changes in Cyanine Dye Fluorescence in Response to Aggregation Stimulation, Blood 5: 741–749 (1978).

    Google Scholar 

  41. T.C. Smith, J.T. Herlily, and S.C. Robinson, The Effect of the Fluorescent Probe 3,3’Diproplythiodicarbocyanine Iodide on the Energy Metabolism of Ehrlich Ascites Tumor Cells, J. Biol. Chem. 256: 1108–1110 (1981).

    PubMed  CAS  Google Scholar 

  42. R.M. Johnstone, P.C. Laris, and A.A. Eddy, The Use of Fluorescent Dyes to Measure Membrane Potentials: A Critique. J. Cell Physiol. 112: 298–301 (1982).

    Article  PubMed  CAS  Google Scholar 

  43. J.C. Freedman, and P.C. Laris, Electrophysiology of Cells and Organelles: Studies with Optical Potentiometric Indicators, Int. Rev. Cytol. (Suppl.) 12: 177–246 (1981).

    CAS  Google Scholar 

  44. R. Lundblad, L.C. Uhteg, C.N. Vogel, H.S. Kingdon, and K. Mann, Preparation and Partial Characterization of two forms of Bovine Thrombin, Biochem. Biophys. Res. Commun. 66: 482–489, (1975).

    Article  PubMed  CAS  Google Scholar 

  45. N.E. Larsen, W.C. Horne, E.R. Simons, Platelet Interaction with Active and TLCK-inactivated Thrombin, Biochem. Biophys. Res. Commun. 87: 403–409 (1979).

    Article  PubMed  CAS  Google Scholar 

  46. D.W. Deamer, R.C. Prince, and A.R. Crofts, The Response of Fluorescent Amines to pH Gradients across Liposome Membrane, Biochim. Biophys. Acta 274: 323–335 (1972).

    Article  PubMed  CAS  Google Scholar 

  47. H. Rottenberg, T. Grunwald, and M. Avron, Determination of pH in Chloroplasts. Eur. J. Biochem. 25:54- (1982).

    Google Scholar 

  48. R. Casadio, A. Baccarini-Melandri, and B.A. Melandri. On the Determination of the Transmembrane pH Difference in Bacterial Chromatophores Using 9-aminoacridine, Eur. J. Biochem. 47: 121–128 (1974).

    Article  PubMed  CAS  Google Scholar 

  49. R.J. Gillies, and D.W. Deamer, Intracellular pH, Curr. Topics Bioenerg. 9: 63–87 (1979).

    CAS  Google Scholar 

  50. W.S. Chow, and A.B. Hope. Light-indiced pH Gradients in Isolated Spinach Chloroplasts, Aust. J. Plant Physiol. 3: 141–153 (1976).

    Article  CAS  Google Scholar 

  51. V. Pick, C.M. Avron, A Method for Measuring the Internal pH in Illuminated Chloroplasts Based on the Stimulation of Proton Uptake by Amines. Eur. J. Biochem. 70: 569–576 (1976).

    Article  PubMed  CAS  Google Scholar 

  52. S. Shuldiner, H. Rottenberg, and C.M. Avron, Determination of pH in Chloroplasts. 2. Fluorescent Amines as a Probe for the Determination of pH in Chloroplasts, Eur. J. Biochem. 25: 64–70 (1972).

    Article  Google Scholar 

  53. J.A. Thomas, R.N. Buchsbaum, A. Zimniak, and E. Racker. Intracellular pH measurements in Ehrlich Ascites Tumor Cells Utilizing Spectroscopic Probes Generated in situ, Biochem. 18: 2210 (1970).

    Google Scholar 

  54. J.M. Heiple, and D.L. Taylor, Intracellular pH in Single Motile Cells, J. Cell Biol. 86: 885–890 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Simons, E.R., Norman, N.E., Schwartz, D.B. (1985). H+ Gradient Changes: Their Measurement and Their Significance in Cell Stimulation. In: Pullman, A., Vasilescu, V., Packer, L. (eds) Water and Ions in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0424-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0424-9_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0426-3

  • Online ISBN: 978-1-4899-0424-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics