Analysis of Proton Translocation Through Hydrogen-Bonded Chains Using Molecular Orbital Methods

  • Steve Scheiner
  • Eric A. Hillenbrand


The chemiosmotic hypothesis has come to be one of the most widely accepted and useful concepts in biochemistry [1–5]. A basic tenet of this theory is that energy may be transduced across a biomembrane via a protonmotive force which is capable of pushing protons against a pH gradient and/or electric field. Bacteriorhodopsin, for example, is known to function as a “proton pump” when it is energized by light of the proper frequency [6–9]. The energy stored in a pH gradient may be harnessed for the purpose of biological work when protons are allowed to be transported across the membrane in much the same way that discharge of an electric capacitor is a source of energy. The synthesis of ATP by H+-ATPase is thought to be driven by the passage of protons through the F0 segment of the transmembrane protein [5,10–13].


Proton Transfer Protein Residue Proton Transfer Process Linear Configuration Molecular Orbital Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Mitchell, Nature 191: 144 (1961)PubMedCrossRefGoogle Scholar
  2. 2.
    P. Mitchell, Ann. Rev. Biochem. 46: 996 (1997)CrossRefGoogle Scholar
  3. 3.
    E. Racker, “A New Look at Mechanisms in Bioenergetics”, Academic, New Youk (1976)Google Scholar
  4. 4.
    D. G. Nicholls, “Bioenergetics: An Introduction to the Chemiosmotic Theory”, Academic, New York (1982).Google Scholar
  5. 5.
    V. P. Skulachev, P. C. Hinkle, Eds., “Chemiosmotic Proton Circuits in Biological Membranes”, Addison-Wesley, Reading, MA (1981).Google Scholar
  6. 6.
    E. Racker, W. Stoeckenius, J. Biol. Chem. 249: 662 (1974).PubMedGoogle Scholar
  7. 7.
    R. A. Bogomolni, R. A. Baker, R. H. Lozier, W. Stoeckenius, Biochem. 19: 2152 (1980).CrossRefGoogle Scholar
  8. 8.
    M. A. Marcus, A. Lewis, Science 195: 1328 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    D. M. Engelman, R. Henderson, A. D. McLachlan, B. A. Wallace, Proc. Nat. Acad. Sci., USA 77: 2023 (1980).CrossRefGoogle Scholar
  10. 10.
    J. Houstek, J. Kopecky, P. Swoboda, Z. Drahota, J. Bioenerg. Biomemb. 14: 1 (1982).CrossRefGoogle Scholar
  11. 11.
    R. H. Fillingame, Ann. Rev. Biochem. 49: 1079 (1980).CrossRefGoogle Scholar
  12. 12.
    Y. Kagawa, S. Ohta, M. Yoshida, N. Sone, Ann. NY Acad. Sci., 358: 103 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    R. S. Negrin, D. L. Foster, R. H. Fillingame, J. Biol. Chem. 255: 5643 (1980).PubMedGoogle Scholar
  14. 14.
    Y. Kagawa, N. Sone, H. Hirata, M. Yoshida, J. Bioenerg. Biomemb. 11: 39 (1979).CrossRefGoogle Scholar
  15. 15.
    W. Stoeckenius in: “Membrane Transduction Mechanisms”, R. A. Cone, J. E. Dowling Eds., Raven Press, New York (1979) pp. 39–47.Google Scholar
  16. 16.
    W. Stoeckenius, Sci. Amer., 234: 38 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    J. F. Nagle, H. J. Morowitz, Proc. Nat. Acad. Sci., USA 75: 298 (1978).CrossRefGoogle Scholar
  18. 18.
    J. F. Nagle, M. Mille, J. Chem. Phys. 74: 1367 (1981).CrossRefGoogle Scholar
  19. 19.
    J. F. Nagle, M. Mille, H. J. Morowitz, J. Chem. Phys. 72: 3959 (1980).CrossRefGoogle Scholar
  20. 20.
    H. F. Schaefer, Ed., “Applications of Electronic Structure Theory”, Plenum, New York (1977).Google Scholar
  21. 21.
    P. Cârsky, M. Urban, “Ab Initio Calculations: Methods and Applications in Chemistry”, Springer-Verlag, Berlin (1980).CrossRefGoogle Scholar
  22. 22.
    R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys., 54: 724 (1971).CrossRefGoogle Scholar
  23. 23.
    S. Scheiner, J. Am. Chem. Soc., 103: 315 (1981).CrossRefGoogle Scholar
  24. 24.
    S. Scheiner, L. B. Harding, J. Am. Chem. Soc., 103: 2169 (1981).CrossRefGoogle Scholar
  25. 25.
    S. Scheiner, J. Chem. Phys. 77: 4039 (1982).CrossRefGoogle Scholar
  26. 26.
    S. Scheiner, M. M. Szczesniak, L. D. Bigham, Int. J. Quantum Chem. (in press).Google Scholar
  27. 27.
    S. Scheiner, L. B. Harding, J. Phys. Chem. (in press).Google Scholar
  28. 28.
    W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, J. A. Pople, QCPE, GAUSSIAN-70, Prog. No. 236 (1974).Google Scholar
  29. 29.
    J. S. Binkley, R. A. Whiteside, R. Krishnan, R. Seeger, D. J. DeFrees, H. B. Schlegel, S. Topiol, L. R. Kahn, J. A. Pople, QCPE, GAUSSIAN-80, Prog. No. 406 (1981).Google Scholar
  30. 30.
    S. Scheiner, J. Phys. Chem., 86: 376 (1982).CrossRefGoogle Scholar
  31. 31.
    E. A. Hillenbrand, S. Scheiner (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Steve Scheiner
    • 1
  • Eric A. Hillenbrand
    • 1
  1. 1.Department of Chemistry and BiochemistrySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations