The Structural and Functional Organization of Water Cleavage in Photosynthesis

  • G. Renger
  • H.-J. Eckert
  • W. Weiss
  • G. Dohnt

Abstract

Photosynthetic water cleavage is the “heart” of the biological solution of solar energy exploitation of the biosphere. The process takes place within the thylakoid membrane and is supported by two photosystems which are connected by a plastoquinone pool (for recent review see ref. 1). The light-induced reaction sequence in system II leads to water cleavage into molecular oxygen and hydrogen bound to plastoquinone which is of moderate reducing power. In system I the electronic energy of metabolically bound hydrogen is further enhanced through the light-driven transfer to NADP+. Free energy is additionally stored as a transmembrane electrochemical potential gradient which is used for ATP synthesis. This organizational scheme indicates that the essential steps for water cleavage are realized by system II.

Keywords

Thylakoid Membrane Water Oxidation Intermediary Redox Plastoquinone Pool Reaction Center Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Renger, G. (1982) in: Biophysik (W. Hoppe, W.Lohmann, H.Markl and H. Ziegler, eds.) Springer Verlag, Berlin-Heidelberg, pp. 532–561Google Scholar
  2. 2.
    Döring,G., Renger,G., Vater,J. and Witt,H.T. (1969) Z.Naturforsch. 24b, 1139–1143Google Scholar
  3. 3.
    Trissl, H.W. and Gräber,P. (1980) Biochim.Biophys.Acta 595, 96–108PubMedCrossRefGoogle Scholar
  4. 4.
    Stiehl, H.H. and Witt, H.T. (1969) Z.Naturforsch. 24b, 1588–1598Google Scholar
  5. 5.
    Renger,G. and Wolff, Ch. (1976) Biochim. Biophys.cta 423, 610–614CrossRefGoogle Scholar
  6. 6.
    Eckert,H.-J., Brettel,K., Renger,G., and Witt,H.T. (1983) FEBSLetters (submitted)Google Scholar
  7. 7.
    Bouges-Bocquet, B. (1973) Biochim. Biophys.Acta 314, 250–256PubMedCrossRefGoogle Scholar
  8. 8.
    Velthuys, B.R. and Amesz,J. (1974) Biochim. Biopíl—ys. Acta 333, 85–94Google Scholar
  9. 9.
    Shuvalov, V.A., Klimov, V.V., Dolan, E.P. and Ke, B. (1980) FEBS-Letters 118, 279–289CrossRefGoogle Scholar
  10. 10.
    Eckert, H.-J., and—Renger, G. (1980) Photochem. Photobiol. 31, 501–511CrossRefGoogle Scholar
  11. 11.
    Fajer,J., Davis,M.S., Forman, A., Klimov, V.V., Dolan E. and Ke, B. (1980), J.Amer. Chem. Soc. 102, 7143–7145CrossRefGoogle Scholar
  12. 12.
    Rutherford, A.W. (1981) Biochem.Biophys.Res.Commun. 102, 1065–1070PubMedCrossRefGoogle Scholar
  13. 13.
    Witt, K. (1973) FEBS-Letters 38, 116–118PubMedCrossRefGoogle Scholar
  14. 14.
    Renger, G. and Eckert, H.J. (1980) Bioelectrochemistry and Bio-energetics 7, 101–124CrossRefGoogle Scholar
  15. 15.
    Sun, A.S.K. ana Sauer,K. (1971) Biochim.Biophys.Acta 239, 399–414Google Scholar
  16. 16.
    Ganago, J.B., Klimov,V.V., Ganago,A.O., Shuvalov,V.A. and Erokin, Y.E. (1982) FEBS-Letters 140, 127–130CrossRefGoogle Scholar
  17. 17.
    DeVault, D. (1980) Quart. Rev. 13, 387–564Google Scholar
  18. 18.
    Joliot, P., Joliot,A., Bouges, B. and Barbieri,G. (1971) Photochem. Photobiol. 11, 287–305CrossRefGoogle Scholar
  19. 19.
    Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 10, 457–475CrossRefGoogle Scholar
  20. 20.
    Babcock, G.T., Blankenship,R.E. and Sauer, K. (1976) FEBS-Letters 61, 286–289PubMedCrossRefGoogle Scholar
  21. 21.
    Gläser,M., Wolff, Ch. and Renger, G. (1976) Z.Naturforsch. 31c, 712–721Google Scholar
  22. 22.
    Renger, G., Gläser, M., and Buchwald,H.-E. (1977) Biochim. Biophys.Acta 461, 392–402PubMedCrossRefGoogle Scholar
  23. 23.
    Conjeaud, H. and Mathis, P. (1980) Biochim. Biophys.Acta 590, 353–359PubMedCrossRefGoogle Scholar
  24. 24.
    Blankenship,R.E., Babcock, G.T., Warden, J.T. and Sauer,K. (1975), FEBS-Letters 51, 287–293PubMedCrossRefGoogle Scholar
  25. 25.
    Renger, G. and VöTker,M. (1982) FEBS-Letters, 149, 203–207CrossRefGoogle Scholar
  26. 26.
    Renger, G. and Eckert,H.-J. (1981) Biochim. Bi Iys. Acta 638, 161–171Google Scholar
  27. 27.
    Livorness,J. and Smith, T.D. (1982) in: Structure and Bonding Vol. 48, Springer Verlag, Berlin, pp. 1–44Google Scholar
  28. 28.
    Renger, G. (1970) Z. Naturforsch. 25b, 966–970Google Scholar
  29. 29.
    Renger, G. (1977) FEBS–Letters, 8172–23–228Google Scholar
  30. 30.
    Powers, L., Chance, B., Ching, V. and Angiolillo, P. (1981) Biophys.J. 34, 465–498PubMedCrossRefGoogle Scholar
  31. 31.
    Renger, G. (1977) in: Topics in Current Chemistry, Vol. 69 ( F.L.Boschke, ed.) Springer Verlag, Berlin-Heidelberg-New York, pp. 39–90Google Scholar
  32. 32.
    Dismukes, G.C., Ferris,K. and Watnick,P. (1982) Photobiochem. Photobiophys. 3, 243–246Google Scholar
  33. 33.
    Kirby, J.A., Robertson, A.S., Smith, J.P., Thompson, A.C., Cooper,S.R. and Klein,M.P. (1982) J.Am.Chem.Soc. 103, 5529–5537CrossRefGoogle Scholar
  34. 34.
    Kirby, J.A., Goodin, D.B., Wydrzynski, T., Robertson, A.S. and Klein, M.P. (1981) J. Am.Chem.Soc. 103, 5537–5542CrossRefGoogle Scholar
  35. 35.
    Denis, M. and Clare, G.M. (1981) Plant-ITysiol. 68, 229–235Google Scholar
  36. 36.
    Renger, D. (1978) in: Photosynthetic Water Oxidation (H. Metzner ed.) Academic Press, London, pp. 229–248Google Scholar
  37. 37.
    Mathis, P. and Havemann, J. (1977) Biochim. Biophys.Acta 461, 167–181 )PubMedCrossRefGoogle Scholar
  38. 38.
    Velthuys, B.R. (1981) in: Proc.5th Int.Congr.Photosynthesis (Akoyunoglu,G. ed.) Balaban Intl.Sci.Serv., Vol.II, pp.75–85, PennsylvaniaGoogle Scholar
  39. 39.
    Renger, G. and Weiss. W. (1982) FEBS Letters 137, 217–221CrossRefGoogle Scholar
  40. 40.
    Renger, G. and Weiss. W. (1983) Biochim.Biophys.Acta 722, 1–11CrossRefGoogle Scholar
  41. 41.
    Sadewasser, D.A. and Dilley, R.A. (1978) Biochim.Biopíl—ys.Acta 501, 208–216CrossRefGoogle Scholar
  42. 42.
    Goldfield, M.B., Blumenfeld, L.A., Dimitrovski, L.G. and Mikoyan, V.D. (1981) Molekul.Bio1.14, 635–641 (Engl.transl.)Google Scholar
  43. 43.
    Rich, P.R. (1981) Biochim. Iophys. Acta 637, 28–33CrossRefGoogle Scholar
  44. 44.
    Renger, G. Erixon,K., Döring, G. and Wolff, Ch. (1976) Biochim. Biophys.Acta 440, 278–286PubMedCrossRefGoogle Scholar
  45. 45.
    Renger, G. (1976) FEBS Letters 69, 225–230PubMedCrossRefGoogle Scholar
  46. 46.
    Renger, G. (1976) Biochim. Biophys. Acta 440, 279–289Google Scholar
  47. 47.
    Renger, G., Hagemann, R. and Dohnt, G. (1981) Biochim. Biophys. Acta 636, 17–26PubMedCrossRefGoogle Scholar
  48. 48.
    Reisfeld, A., Mattoo, A.K. and Edelmann, M. (1982) Eur.J. Biochem. 124, 125–129PubMedCrossRefGoogle Scholar
  49. 49.
    Hurt, E. and Hauska, G. (1981) Eur.J.Biochem. 117, 591–599PubMedCrossRefGoogle Scholar
  50. 50.
    Metz, J.G. and Miles, D. (1982) Biochim. Biophys. Acta 681, 95–102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • G. Renger
    • 1
  • H.-J. Eckert
    • 1
  • W. Weiss
    • 1
  • G. Dohnt
    • 1
  1. 1.Max-Volmer-Institut für Biophysikalische und Physikalische ChemieTechnische Universität BerlinBerlin 12Germany

Personalised recommendations