Advertisement

Active Monovalent Cation Transport in Canine Cardiac Tissues

  • H. M. Rhee

Abstract

Previous investigations suggest that functionally different cardiac tissues have different electrochemical and physiological properties[1–3]. The intracellular ionic distribution of the sinoatrial node or other specialized cardiac conducting fibers differs from the ionic concentrations of contractile ventricular muscle[4–7]. Electrophysiological sensitivity to cardiac steroids such as ouabain in canine Purkinje fiber exceeds the sensitivity to ouabain in the ventricle[8]. K-strophanthin decreases conduction velocity in canine Purkinje fibers at a concentration which did not significantly alter the parameter in the ventricular muscle[9]. A greater sensitivity to ouabain in Purkinje fibers that the ventricular fibers was confirmed by other differences such as K fluxes[10–12]. However, recent studies indicate that partially purified Na+,K+ -ATPase prepared from the bovine false-tendon had no greater sensitivity to ouabain than the comparable Na+,K+ -ATPase preparation from the papillary muscle of the same animal[13]. Although there may be no significant difference in ouabain sensitivity of Na+,K+ -ATPase activity in vitro, the exact biochemical basis of such electrophysiological differences between the conducting fibers and the contractile muscle has not yet been documented.

Keywords

ATPase Activity Papillary Muscle Cardiac Tissue Monovalent Cation Cardiac Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. F. Cranefield, “The Conduction of the Cardiac Impulse,” Futura Publishing Co., Mount Kisco, New York (1975).Google Scholar
  2. 2.
    L. Sherf and T. N. James, Amer.J.Cardiol., 44: 345–370 (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Vassalle and C. I. Lin, Am.J.Physiol., 236 (5): H689 - H697 (1979).PubMedGoogle Scholar
  4. 4.
    F. Davies, R. E. Davies, E. T. B. Francis, and R. Whittam, J.Physiol., 118: 278–281 (1952).Google Scholar
  5. 5.
    P. I. Polimeni, Amer.J. Physiol., 227: 676–683 (1974).PubMedGoogle Scholar
  6. 6.
    P. A. Poole-Wilson and I. R. Cameron, Amer.J.Physiol., 229: 1229–1304 (1975).Google Scholar
  7. 7.
    R. L. Vick, D. C. Chang, B. L. Nichols, C. F. Hazlewood, and M. C. Harvey, Annals of the New York Acad.Sci., 204: 575–606 (1973).CrossRefGoogle Scholar
  8. 8.
    M. Vassalle, J. Karis, and B. F. Hoffman, Am.J.Physiol., 203: 433–439 (1962).PubMedGoogle Scholar
  9. 9.
    G. K. Moe and R. Méndez, Cir., 4: 729–734 (1951).CrossRefGoogle Scholar
  10. 10.
    P. B. Hollander, J.Clin.Pharmacol., 15: 560 (1975).Google Scholar
  11. 11.
    P. I. Polimeni and M. Vassalle, Am.J.Physiol., 218 (5): 1381–1388 (1970).PubMedGoogle Scholar
  12. 12.
    P. I. Polimeni and M. Vassalle, Am.J.Cardiol., 27: 622–629 (1971).PubMedCrossRefGoogle Scholar
  13. 13.
    F. J. Palfi, H. R. Besch, Jr., and A. M. Watanabe, J.Mol.Cell. Cardiol., 10: 1149–1155 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    H. M. Rhee, Brit.J.Pharmacol., 73: 81–86 (1981).CrossRefGoogle Scholar
  15. 15.
    T. N. James, Anat.Rec., 143: 251–256 (1962).PubMedCrossRefGoogle Scholar
  16. 16.
    S. Winegard and A. M. Shanes, J.Gen.Physiol., 45: 371–394 (1962).CrossRefGoogle Scholar
  17. 17.
    D. Ku, T. Akera,C. L. Pew, and T. M. Brody, Naunyn-Schmideberg’s Arch.Pharmacol., 258: 185–200 (1974).Google Scholar
  18. 18.
    J. C. Bernstein and Y. Israel, J.Pharmacol.Exp.Ther., 174: 323–329 (1979).Google Scholar
  19. 19.
    H. M. Rhee, Naunyn-Schmiedeberg’s Arch.Pharmacol., 318: 344–348 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    W. Huang, H. M. Rhee, T. H. Chiu, and A. Askari, J.Pharmacol. Exp.Ther., 211: 571–582 (1979).PubMedGoogle Scholar
  21. 21.
    H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall, J.Biol.Chem., 193: 265–275 (1951).Google Scholar
  22. 22.
    R. C. Truex, “Cardiac Arrhythmías,” L.S. Dreifus and W. Likoff, eds., Grune and Stratton, New York, pp. 1–12 (1973).Google Scholar
  23. 23.
    S. L. Bonting, K. A. Simon, and N. M. Hawkins, Arch.Biochem. Biophys., 95: 416–423 (1961).PubMedCrossRefGoogle Scholar
  24. 24.
    A. Schwartz, G. E. Lindenmayer, and J. C. Allen, Pharmacol.Rev., 27: 1–134 (1975).Google Scholar
  25. 25.
    J. C. Skou, Biochim.Biophys.Acta., 42: 6–23 (1960).CrossRefGoogle Scholar
  26. 26.
    T. J. Hougen and T. W. Smith, Circ.Res., 42 (6): 856–863 (1978).PubMedCrossRefGoogle Scholar
  27. 27.
    W. Kübler and P. von Smekal, Acta Cardiol.Suppl., 17: 103–113 (1975).Google Scholar
  28. 28.
    H. Hammerman, A. Hernandez, and D. Goldring, J.Lab.Clin.Med., 78: 799 (1971).PubMedGoogle Scholar
  29. 29.
    S. R. Houser and A. R. Freeman, Amer.J.Physiol., 236 (3): H519 - H524 (1979).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • H. M. Rhee
    • 1
  1. 1.School of MedicineOral Roberts UniversityTulsaUSA

Personalised recommendations