Advertisement

Cation Transport during the Cell Cycle of Neuroblastoma Cells

  • J. Boonstra
  • C. L. Mummery
  • E. J. J. van Zoelen
  • P. T. van der Saag
  • S. W. de Laat

Abstract

The plasma membrane of mammalian cells is considered as having a major role in the regulation of cell growth. Acting as a barrier between the extra- and intracellular environment, the plasma membrane determines the compositional differences between them by selective permeability and by specific membrane-bound transport systems for ions and nutrients. In addition, the plasma membrane as the first cell organelle interacting with external factors, functions as the transducer of all extracellular signals which may affect the cellular status. Modulation of its compositional and structural properties might in turn be involved in the ability to perform this function.

Keywords

Cell Cycle Neuroblastoma Cell Cell Cycle Phase Cation Transport Pump Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. de Laat and P. T. van der Saag, The plasma membrane as a regulatory site in growth and differentiation of neuroblastoma cells, Int. Rev. Cytol. 74: 1–54 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    S. W. de Laat, J. Boonstra, W. H. Moolenaar, C. L. Mummery, P. T. van der Saag, and E. J. J. van Zoelen, Cation transport and growth control in neuroblastoma cells in culture, in: “Membranes in Growth and Development,” G. Giebisch and J. Hofman, eds., Alan R. Liss Inc., New York 211–236 (1982).Google Scholar
  3. 3.
    J. Boonstra, C. L. Mummery, E. J. J. van Zoelen, P. T. van der Saag and S. W. de Laat, Monovalent cation transport during the cell cycle, Anticancer Res. 2: 265–274 (1982).PubMedGoogle Scholar
  4. 4.
    S. W. de Laat, P. T. van der Saag and M. Shinitzky, Microviscosity modulation during the cell cycle of neuroblastoma cells, Proc. Natl. Acad. Sci. USA. 74: 4458–4461 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    E. J. J. van Zoelen, P. T. van der Saag and S. W. de Laat, Family tree analysis of a transformed cell line and the transition probability model for the cell cycle, Exp. Cell Res. 131: 395–406, (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Boonstra, C. L. Mummery, L. G. J. Tertoolen, P. T. van der Saag and S. W. de Laat, Characterization of 42K+ and 86Rb+ transport and electrical membrane properties in exponentially growing neuroblastoma cells, Biochim. Biophys. Acta 643: 89–100 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    J.Boonstra, C. L. Mummery, L. G. J. Tertoolen, P. T. van der Saag and S. W. de Laat, Cation transport and growth regulation in neuroblastoma cells. Modulations of K transport and electrical membrane properties during the cell cycle, J. Cell. Physiol., 107: 75–83 (1981).Google Scholar
  8. 8.
    J. Boonstra, S. A. Nelemans, A. Feijen, A. Bierman, E. J. J. van Zoelen, P. T. van der Saag and S. W. de Laat, Effect of fatty acids on plasma membrane lipid dynamics and cation permeability in neuroblastoma cells, Biochim. Biophys. Acta 692: 321–329 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    J. G. Bluemink and S. W. de Laat, Plasma membrane assembly as related to cell division, in: “The synthesis, assembly and turnover of cell surface components,” G. Poste and G. L. Nicolson, eds., Elsevier North Holland Biomedical Press, Amsterdam, pp. 403–461 (1977).Google Scholar
  10. 10.
    S. W. de Laat, L. G. J. Tertoolen, P. T. van der Saag and J. G. Bluemink, Quantitative analysis of modulation in numerical and lateral distribution of intramembrane particles during the cell cycle of neuroblastoma cells, J. Cell. Biol. In press, (1982).Google Scholar
  11. 11.
    S. W. de Laat, P. T. van der Saag, E. L. Elson and J. Schlessinger, Lateral diffusion of membrane lipids and proteins during the cell cycle of neuroblastoma cells, Proc. Natl. Acad. Sci. USA. 77: 1526–1528 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    C. L. Mummery, J. Boonstra, P. T. van der Saag and S.W. de Laat, Modulation of functional and optimal (Na+-K+)ATPase activity during the cell cycle of neuroblastoma cells, J.Cell.Physiol. 107: 1–9 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    J. B. Smith and E. Rozengurt, Serum stimulation of the Na+,K+ pump in quiescent fibroblasts by increasing Na+ entry, Proc. Natl. Acad. Sci. USA. 75: 5560–5564 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    W. H. Moolenaar, C. L. Mummery, P. T. van der Saag and S. W. de Laat, Rapid ionic events and the initiation of growth in serum-stimulated neuroblastoma cells, Cell 23: 789–798 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Boonstra, P. T. van der Saag, W. H. Moolenaar and S.+W.+de Laat, Rapid effects of nerve growth factor on the Na,K -numn in rat pheochromocytoma cells, Exp.Cell Res. 131: 452–455 (1981)Google Scholar
  16. 16.
    E. J. J. van Zoelen, L. G. J. Tertoolen, J. Boonstra, P. T. van der Saag and S. W. de Laat, Effect of external ATP on the plasma membrane permeability and (Na+-K+)AT-Pase activity of mouse neuroblastoma cells, Biochim.Biophys.Acta 720: 223–234 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    C. L. Mummery, J. Boonstra, P. T. van der Saag and S.W. de Laat, Modulations of Na transport during the cell cycle of neuroblastoma cells, J. Cell. Physiol. 112: 27–34 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    W. H. Moolenaar, J. Boonstra, P. T. van der Saag and S.W. de Laat, Sodium/proton exchange in mouse neuroblastoma cells, J. Biol. Chem. 256: 12883–12887 (1981).PubMedGoogle Scholar
  19. 19.
    R. D. Moore, Stimulation of Na+:H+ exchange by insulin, Biophys. J. 33: 203–210 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    M. J. Rindler and M. H. Saier, Evidence for Na+/H+ antiport in cultured Dog Kidney Cells (MDCK), J. Biol. Chem. 256: 10820–10825 (1981).PubMedGoogle Scholar
  21. 21.
    E. J. J. van Zoelen, C. L. Mummery, J. Boonstra, P. T. van der Saag and S. W. de Laat, Membrane regulation of the Na,KSATPase during the neuroblastoma cell cycle. Correlation with protein lateral mobility, submittedGoogle Scholar
  22. 22.
    M. Lubin, Control of growth by intracellular potassium and sodium concentrations is relaxed in transformed 3T3 cells, Biochem. Biophys. Res. Comm. 97: 1060–1067 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    L. Zs-Nagy, G.Lustyik, V.Zs-Nagy4 B.Zarandi and C.Freddari-Bertoni, Intracellular Na:K ratios in human cancer cells as revealed by energy dispersive K-ray microanalysis, J. Cell Biol. 90: 769–777 (1981).CrossRefGoogle Scholar
  24. 24.
    E. Rozengurt and L.A. Heppel, Serum rapidly stimulates ouabain sensitive 86Ró+ influx in quiescent 3T3 cells, Proc.Natl. Acad. Sci. USA. 72: 4492–4495 (1975).PubMedCrossRefGoogle Scholar
  25. 25.
    S. A. Mendoza, N. H. Wigglesworth, P. Polijannelto and E. Rozengurt, Na entry and Na-K pump activity in murine, hamster and human cells, J. Cell. Physiol. 103: 17–27 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    R. Revoltella, L. Bertolini and M. Pediconi, Unmasking of nerve growth factor membrane-specific binding sites in synchronized murine C1300 neuroblastoma cells, Exp. Cell Res. 85: 89–94 (1974).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • J. Boonstra
    • 1
  • C. L. Mummery
    • 1
  • E. J. J. van Zoelen
    • 1
  • P. T. van der Saag
    • 1
  • S. W. de Laat
    • 1
  1. 1.Hubrecht LaboratoryUtrechtThe Netherlands

Personalised recommendations