Modifications of Human Erythrocyte Membranes and Their Effect on Water Permeability Studied by a Nuclear Magnetic Resonance Technique

  • Gheorghe Benga
  • Octavian Popescu
  • Victor I. Pop
  • Ross P. Holmes
  • Tudor Pavel
  • Mihai Ionescu


Although the process of water transport across biological membranes is of considerable importance for many physiological processes and various hypotheses have been proposed and investigated, the mechanism controlling water movement has not been fully elucidated. Because of its simple structure, lacking internal membranes, the red blood cell is ideally suited for studying water permeability.


Erythrocyte Membrane Water Permeability Water Diffusion Nuclear Magnetic Resonance Technique Human Erythrocyte Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashley, D. L., and Goldstein, J. H., 1981, Time dependence of the effect of p-chloromercuribenzoate on erythrocyte water permeability: a pulsed nuclear magnetic resonance study, J. Membrane Biol., 61: 199.CrossRefGoogle Scholar
  2. Benga, G. H., and Morariu V. V., 1977, Membrane defect affecting water permeability in human epilepsy, Nature, 265: 636.PubMedCrossRefGoogle Scholar
  3. Benga, G. H., Pop, V.I., Ionescu, M., Holmes, R. P., and Popescu, O., 1982, Irreversible inhibition of water diffusion through erythrocyte membranes by fluoresceinmercuric acetate, Cell Biol.Int.Rep., 6: 775.PubMedCrossRefGoogle Scholar
  4. Benga, G. H., Pop, V. I., Popescu, O., Ionescu, M., and Mihele, V., 1983, Water exchange through erythrocyte membranes, III. Nuclear magnetic resonance studies on the effects of inhibitors and of chemical modification of human membranes, J. Membrane Biol., 76: 129.CrossRefGoogle Scholar
  5. Brown, P. A., Feinstein, M. B., and Sha’afi R. I., 1975, Membrane proteins related to water transport in human erythrocytes, Nature, 254: 553.CrossRefGoogle Scholar
  6. Cabantchik, Z. I., and Rothstein, A., 1974, Membrane proteins related to anion permeability of human red blood cells, II. Effect of proteolytic enzymes on disulfonic stilbene sites of surface proteins, J.Membrane Biol., 14: 227.CrossRefGoogle Scholar
  7. Carlsson, J., Drevin, H., and Axen, R., 1978, Protein thiolation and reversible protein-protein conjugation. N-succinimidyl-3-(2pyridylthio) propionate a new heterobifunctional reagent, J.Biochem., 173: 723.Google Scholar
  8. Conlon, T., and Outhred, R., 1972, Water diffusion permeability of erythrocytes using an NMR technique, Biochem Biophys Acta., 288: 354.PubMedCrossRefGoogle Scholar
  9. Dodge, J. T., Mitchell, C., and Hanahan, D. J., 1963, The preparation and chemical characteristics of hemoglobin free ghosts of human erythrocytes, Arch.Biochem. Biophys., 100: 119.PubMedCrossRefGoogle Scholar
  10. Fabry, M. E., and Eisenstadt, M., 1975, Water exchange between red cells and plasma. Measurement by nuclear magnetic relaxation, Biophys J., 15: 1101.PubMedCrossRefGoogle Scholar
  11. Fairbanks, G., Steck, T. L., and Wallach, D. F. H., 1971, Electrophoretic analysis of major polypeptides of the human-erythrocyte membrane, Biochemistry., 10: 2606.PubMedCrossRefGoogle Scholar
  12. Jennings, J. L., and Passow, H., 1979, Anion transport across the erythrocyte membrane in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by 4,4’-diisothiocyano dihydrostilbene-2,2’-disulfonate, Biochim Biophys Acta., 554: 498.PubMedCrossRefGoogle Scholar
  13. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the hand of bacteriophage, T4, Nature, 227: 690.CrossRefGoogle Scholar
  14. Lowry, O. H., Rosebrough, H. J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the Folin phenol reagent, J.Biol.Chem., 193: 265.Google Scholar
  15. Macey, R. I., Karan, D. M., and Farmer, R. E. L., 1972, Properties of water Channels in Human Red Cells, in: “Biomembranes,” F. Kreuzer, J. F. G. Siegers, eds., Plenum Press, New York.Google Scholar
  16. Morariu, V. V., and Benga, G. H., 1977, Evaluation of a nuclear magnetic resonance technique for the study of water exchange through erythrocyte membranes in normal and pathological subjects, Biochim Biophys Acta., 469: 301.PubMedCrossRefGoogle Scholar
  17. Morariu, V. V., Pop, I. V., Popescu, O., and Benga, G. H., 1981, Effects of temperature and pH on the water exchange through erythrocyte membranes: evidence for state transitions, J. Membrane Biol., 62: 1.CrossRefGoogle Scholar
  18. Naccache, P., and Sha’afi, R. I., 1974, Effect of PCMBS on water transfer across biological membranes, J.Cell Physiol., 83: 449.PubMedCrossRefGoogle Scholar
  19. Passow, H., Fasold, H., Lepke, S., Pring, M., and Schuhmann, B., 1977, Chemical and ensymatic modification of membrane proteins and anion transport in human red blood cells, in: “Membrane Toxicity,” M. W. Miller, A. E. Shamoo, eds., Plenum Press, New York.Google Scholar
  20. Pirkle, J. L., Ashley, D. L., and Goldstein, J., 1979, Pulse nuclear magnetic resonance measurements of water exchange across the erythrocyte membranes employing a low Mn concentration, Biophys J., 25: 389.PubMedCrossRefGoogle Scholar
  21. Sha’afi, R. I., 1981, Permeability for water and other polar molecules, in: “Membrane Transport,” S. L. Bonting, H. H. M., Du Pont, eds., Elsevier, Amsterdam.Google Scholar
  22. Sha’afi, R. I., and Feinstein, M. B., 1977, Membrane water channels and SH-groups, in: “Membrane Toxicity,” M. W. Miller and A. E. Shamoo, eds., Plenum Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Gheorghe Benga
    • 1
  • Octavian Popescu
    • 1
  • Victor I. Pop
    • 1
  • Ross P. Holmes
    • 3
  • Tudor Pavel
    • 2
  • Mihai Ionescu
    • 4
  1. 1.Departments of Cell Biology, Faculty of MedicineMedical and Pharmaceutical InstituteCluj-NapocaRoumania
  2. 2.Physiology, Faculty of MedicineMedical and Pharmaceutical InstituteCluj-NapocaRoumania
  3. 3.Burnsides Research LaboratoryUniversity of IllinoisUSA
  4. 4.Institute of Physics and Nuclear Engineering Bucharest-MagureleRoumania

Personalised recommendations