Microwave Conductivity of Free, “Bulk” and Bound Water

  • George Masszi
  • Ladislas Koszorus


Ultra-short radiowaves have been used in the research of biological structures since Höber’s first investigation Höber (1910). Radiofrequency measurements in our Institute have shown the presence of bound K in muscle (Ernst, 1935; Masszi, 1958; Masszi, Tigyi-Sebes, 1962; Ernst, 1963).


Dielectric Relaxation Bulk Water Microwave Range Sand Wave Rana Esculenta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballario, C., Bonincontro, A., Cametti, C., Di Biasio, A., 1980, Dielectric properties of water-cellulose system at microwave frequencies, J.Coll.Interface Sci., 78: 242.CrossRefGoogle Scholar
  2. Budó, A., 1949, Dielectric relaxation of molecules containing rotating polar groups, J.Chem.Phys., 17: 686.CrossRefGoogle Scholar
  3. Cook, H. F., 1951, Dielectric behavior of human blood at microwave frequencies, Nature, 168: 247.PubMedCrossRefGoogle Scholar
  4. Debye, P., 1929, in: “Polare Molekeln,” S. Hirzel, Leipzig.Google Scholar
  5. Delbos, G., Bottreau, A. M., Marzat, C., and Salefran, L. J., 1978, Microwave dielectric relaxation of aqueous solutions of dextran, J.Microwave Power 13: 69.Google Scholar
  6. Ernst, E., 1935, The Sechenov.J.Phys., USSR 21. Prog.XV Int. Physíol.Kongr.Google Scholar
  7. Ernst, E., 1963, in: “Biophysics of the Striated Muscle,” Akad.Kiadó Budapest.Google Scholar
  8. Foster, K. R., Schepps, J. L., and Schwan, H. P., 1980, Microwave dielectric relaxation in muscle. A second look, Biophys.J., 29: 271.PubMedCrossRefGoogle Scholar
  9. Foster, K. R., Epstein, B. R., Jenin, P. C., and Mackay, R. A., 1982, Dielectric studies on nonionic microemulsions, J.Colloid Interface Sci., 88: 233.CrossRefGoogle Scholar
  10. Foster, K. R., Schepps, J. L., and Epstein, B R., 1982, Microwave dielectric studies on proteins, tissues, and heterogeneous suspensions, Bioelectromagnetics 3: 29.PubMedCrossRefGoogle Scholar
  11. Gascoyne, P. R. C., Pethig, R., and Szent-Györgyi, A., 1981, Water structure-dependent charge transport in protein, Proc.Natl.Acad.Sci.USA., 78: 261.PubMedCrossRefGoogle Scholar
  12. Grant, E. H., 1965, The structure of water neighboring proteins, peptides, and amino acids as deduced from dielectric measurements, Ann.New York Acad.Sci., 125: 418.CrossRefGoogle Scholar
  13. Hasted, J. B., Ritson, D. M., and Collie, C. H., 1948, Dielectric properties of aqueous ionic solutions, J.Chem.Phys., 16: 1.CrossRefGoogle Scholar
  14. Hasted, J. B., 1961, The dielectric properties of water, Prog.Dielectrics., 3: 103.Google Scholar
  15. Höber, R., 1910, Eine Methode die elektrische Leitfähigkeit im Innern von Zellen zu messen, Pfl.Arch., 133: 237.CrossRefGoogle Scholar
  16. Kaatze, U. 1975, Dielectric relaxation in aqueous solutions of polyvinylpyrrolidone, Adv.Mol.Relax, Proc., 7: 71.CrossRefGoogle Scholar
  17. Kaatze, U., Henze, R., Seegers, A., and Pottel, R., 1975, Dielectric relaxation in colloidal phospholipid aqueous solutions, Ber. Bunsenges.Phys.Chem., 79: 42.CrossRefGoogle Scholar
  18. Kaatze, U., 1978, Dielectric relaxation in aqueous solutions of polymers, Progr.Colloid Polymer Sci., 65: 162.CrossRefGoogle Scholar
  19. Kaatze, U., and Wen, W. Y., 1978, Molecular motion and structure of solutions of triethylenediamine in H2O and D20 as studied by dielectric relaxation measurements, J.Phys.Chem., 82: 109.CrossRefGoogle Scholar
  20. Koszorus, L., and Masszi, G., 1982, Investigation of hydration of macromolecules. II. Study of ethyleneglycol and 1–3-dioxane solutions by dielectric method. Acta Biochim.Biophys.Acad.Sci. Hung., 17: 237.Google Scholar
  21. Le Petit, J. P., Delbos, G., Bottreau, A. M., Dutuit, J., Marzat, C., and Cabanas, R., 1977, Dielectric relaxations of emulsions of saline aqueous solutions, J.Microwave Power, 12: 335.Google Scholar
  22. Masszi, G., 1958, Messung der Leitfähigkeit des Muskels mit Hochfrequenzstorm, Acta Physiol.Acad.Sci.Hung., 12: 78.Google Scholar
  23. Masszi, G., and Tigyi-Sebes, A., 1962, The state of potassium in muscle investigated by high frequency, Acta Physiol.Acad.Sci. Hung., 22: 273.PubMedGoogle Scholar
  24. Masszi, G., and Orkényi, J., 1967, Microwave investigation of biological substances II. Acta Biochim.Biophys.Acad.Sci.Hung., 2: 69.Google Scholar
  25. Masszi, G., 1972, Dielectric relaxation and water structure in gelatine solutions, Acta Biochim.Biophys.Acad.Sci.Hung., 7: 349.PubMedGoogle Scholar
  26. Masszi, G., Szijjârtó, Z., and Gróf, P., 1976, Microwave investigation of polyethyleneglycol solutions, Acta Biochim.Biophys.Acad.Sci.Hung., 11: 190.Google Scholar
  27. Masszi, G., Inzelt, G., and Gróf P., 1976, Investigation of hydration of macromolecules, Acta Biochim.Biophys.Acad.Sci.Hung., 11: 45.PubMedGoogle Scholar
  28. Pennock, B. R. and Schwan, H. P., 1969, Further observations on the electrical properties of hemoglobin-bound water, J.Phys.Chem., 73: 2600.PubMedCrossRefGoogle Scholar
  29. Schwan, H. P., 1957, Electrical properties of tissue and cell suspensions, in: “Biological and Medical Physics V. Acad. Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • George Masszi
    • 1
  • Ladislas Koszorus
    • 1
  1. 1.Biophysical InstituteMedical UniversityPëcsHungary

Personalised recommendations