On the Interaction of Lecithin Vesicles with Chaotropic Ions

  • T. Pigor
  • R. Lawaczeck

Abstract

The intervesicular interaction between lecithin vesicles and chaotropic ions is described. The action of these ions leads to a precipitation of vesicles and at the same time to an increase of the turbidity. The tendency to induce this precipitation increases for monovalent anions in the following order: Cl < CH3COO < NO 3 < N 3 < Br < SCN < I < C1O 4 . The interpretation of the cations-effect is less straightforward. The ions-effect decreases with increasing temperature and does not show any significant change at the phase-transition temperature. A flocculation and/or aggregation of vesicles is discussed as origin for the observed ions-effect. Fusion processes seem to be slow and not predominant.

Keywords

Structure Breaking Monovalent Anion Dialysis Experiment Vesicle Solution Vesicle Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Hofmeister, Zur Lehre von der Wirkung der Salze, Arch. Exptl. Pathol. Pharmakol. 24: 247 (1888)CrossRefGoogle Scholar
  2. 2.
    S. A. Simon, L. J. Lis, J. W. Kauffman and R. C. MacDonald, A calorimetric and monolayer investigation of the influence of ions on the thermodynamic properties of phosphatidylcholine, Biochim. Biophys. Acta 375: 317 (1975)CrossRefGoogle Scholar
  3. 3.
    L. J. Lis. J. W. Kauffman and D. F. Shriver, Effect of ions on phospholipid layer structure as indicated by Raman Spectroscopy, Biochim. Biophys. Acta 406: 453 (1975)CrossRefGoogle Scholar
  4. 4.
    M. K. Jain and N. M. Wu, Effect of small molecules on the Dipalmitoyl Lecithin liposomal bilayer: III phase transition in lipid bilayer, J. Membrane Biol. 34: 157 (1977)CrossRefGoogle Scholar
  5. 5.
    M. Gründel, R. Grupe, E. Preusser, H. Göring, Fluorimetrische Messungen zur Lipid-Ionenwechselwirkung an Single-Liposomen aus Eilecithin und Eilecithin-Cholesterin, studia biophysica 58: 203 (1976)Google Scholar
  6. 6.
    J. N. Israelachvili, S. Marcelja and R. G. Horn, Physical principles of membrane organization, Quart. Reviews of Biophysics 13: 121 (1980)CrossRefGoogle Scholar
  7. 7.
    R. Lawaczeck, Intervesicular lipid transfer and direct fusion of phospholipid vesicles: a comparison an a kinetic basis, J. Colloid Interface Sci. 66: 247 (1978)CrossRefGoogle Scholar
  8. 8.
    A. D. Bangham, J. De Gier and G. D. Greville, Osmotic properties and water permeability of phospholipid liquid crystals, Chem. Phys. Lipids 1: 225 (1967)CrossRefGoogle Scholar
  9. 9.
    R. M. Blum and R. E. Forster, The water permeability of erythrocytes, Biochim. Biophys. Acta 203: 410 (1970)CrossRefGoogle Scholar
  10. 10.
    R. E. Verrall, Infrared spectroscopy of aqueous electrolyte solutions. Water a comprehensive treatise (F. Franks, Ed.)3 pp.211–264, Plenum Press New York 1973Google Scholar
  11. 11.
    L. T. Boni, T. P. Stewart, J. L. Alderfer and S. W. Hui, Lipid - Polyethylene Glycol Interactions:I. Induction of fusion between liposomes, J. Membrane Biol. 62: 65 (1981)CrossRefGoogle Scholar
  12. 12.
    G. L. Jendrasiak, Halide interaction with phospholipids: proton magnetic resonance studies, Chem. Phys. Lipids 9: 133 (1972)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • T. Pigor
    • 1
  • R. Lawaczeck
    • 1
  1. 1.Institute of Physical ChemistryUniversity of WürzburgWürzburgGermany

Personalised recommendations