Ion Pairs of Simple Electrolytes and of Polyionic Biopolymers in Electric Fields

  • Eberhard Neumann
  • Kinko Tsuji
  • Dieter Schallreuter


‘I believe that the ultimate goal of biological study is to “translTte” the phenomena of life into meaningful physical concepts’. Aharon Katzir-Katchalsky (1914–1972) to the memory of whom this account is dedicated.


Dipole Moment Counterion Polarization Purple Membrane Electric Field Effect Submitochondrial Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Katchalsky, Chemical dynamics of macromolecules and its cybernetic significance, in: “Biology and the physical sciences”, S. Devons, ed., Columbia University Press, New York (1969), pp. 267–298.Google Scholar
  2. 2.
    E. Neumann, Molecular hysteresis and its cybernetic significance, Angew. Chem. internat. Edit. 12: 356–369 (1973).Google Scholar
  3. 3.
    H. Michel and D. Oesterhelt, Light-induced changes of the pH-gradient and the membrane potential in halobacterium halobium, FEBS Lett. 65: 175–178 (1976).PubMedCrossRefGoogle Scholar
  4. 4.
    D. Schallreuter, Zonenassoziation in einfachen Elektrolyten und biologischen Polyelektrolyten, Thesis, Kostanz and Martinsried (1982).Google Scholar
  5. 5.
    K. Tsuji and E. Neumann, Structural changes in bacteriorhodopsin induced by electric impulses, Int. J. Biol. Macromolecules, 3: 231–242 (1981).CrossRefGoogle Scholar
  6. 6.
    K. Tsuji and E. Neumann, Electric field-induced pK-changes in membrane-bound bacteriorhodopsin, FEBS Lett. 128: 265–268 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    K. Tusji and E. Neumann, Conformational flexibility of membrane proteins in electric fields. I. UV absorbance and light scattering of bacteriorhodopsin in purple membranes, Biophys. Chem. 17 (1983).Google Scholar
  8. 8.
    E. Neumann and A. Katchalsky, Long-lived conformation changes induced by electric impulses in biopolymers, Proc. Natl. Acad. Sci. USA 69: 993–997 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    E. Neumann, Electric field effects in biopolymer structures and electrical chemical memory recording, in: “Ions in macromolecular and biological systems”, D.H. Everett and B. Vincent, eds., Scientechnica, Bristol (1978), pp. 170–191.Google Scholar
  10. 10.
    T.L. Rosenberry and E. Neumann, The interaction of ligands with acetylcholinesterase. Use of temperature-jump relaxation kinetics in the binding of specific fluorescent ligands, Biochemistry 16: 3786–3792 (1977).CrossRefGoogle Scholar
  11. 11.
    E. Neumann, Dynamics of molecular recognition in enzyme catalysis, in: “Structural and functional aspects of enzyme catalysis”, H. Eggerer and R. Huber, eds., 32. Mosbach Coll., Springer, Berlin (1981), pp. 45–58.CrossRefGoogle Scholar
  12. 12.
    E. Neumann, D. Nachmansohn and A. Katchalsky, An attempt at an integral interpretation of nerve excitability, Proc. Natl. Acad. Sci. USA 70: 727–731 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    H.T. Witt, E. Schlodder, and P. Graeber, Membrane-bound ATP synthesis generated by an external electric field, FEBS Lett. 69: 272–276 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    Ch. Vinkler and R. Korenstein, Characterization of external electric field-driven ATP synthesis in chloroplasts, Proc. Natl. Acad. Sci. USA 79: 3183–3187 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Teissie, B.E. Knox, T.Y. Tsong, and J. Wehrle, Synthesis of ATP in respiration-inhibited submitochondrial particles induced by 4s electric pulses, Proc. Natl. Acad. Sci. USA 78: 7473–7477 (1981).CrossRefGoogle Scholar
  16. 16.
    E. Schlodder and H.T. Witt, Relation between the initial kinetics of ATP synthesis chloroplast ATPase studied by external field pulses, Biochim. Biophys. Acta 635: 571–584 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Bergmann, M. Eigen, and L.C.M. DeMaeyer, Dielettrische Absorption als Folge chemischer Reaktionen, Ber. Bunsenges. Phys. Chem. 67: 819–826 (1963).Google Scholar
  18. 18.
    E. Neumann, Fundamentals of electric-chemical field effects in biological macromolecules, in: “Electric field effects in macromolecules and membranes”, U. Zimmermann and R. Benz, eds., Springer, Berlin (1983).Google Scholar
  19. 19.
    E.A. Guggenheim, “Thermodynamics” 5th Ed., North Holland, Amsterdam (1967).Google Scholar
  20. 20.
    G. Schwarz, On dielectric relaxation due to chemical rate processes, J. Phys. Chem. 71: 4021–4030 (1967).CrossRefGoogle Scholar
  21. 21.
    J.G. Kirkwood and I. Oppenheim, “Chemical Thermodynamics”, McGrawhill, New York (1961), Chp. 14.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Eberhard Neumann
    • 1
  • Kinko Tsuji
    • 1
  • Dieter Schallreuter
    • 1
  1. 1.Max-Planck-Institut für BiochemieBiophysical Chemistry UnitMartinsried/MünchenF.R. Germany

Personalised recommendations