Advertisement

Computer Simulations of Structural Organization of Water around Biomolecule

  • Run-sheng Chen
  • Xiang-shan Ni
  • Xiu-fan Shi

Abstract

In order to elucidate a life system at molecular and submolecular levels, it is necessary to apply physical concepts and methods to biology. To perform computer simulations of motions of biomolecules, we must calculate the intra- and interaction energies in terms of empirical, semiempirical or ab initio methods. Using CNDO/2, we have studied the interaction between chiral molecules[1,2] and the rotation barrier of bases in nucleic acid[3,4]. Owing to the difficulties in applying CNDO and ab initio methods to macromolecules, we adopted the atom-atom potentials developed by E. Clementi to deal with polypeptide and oligonucleotide[5,6]. As neuropeptides are of interest, we calculated the interaction between leu-enkephalin and water molecule.

Keywords

Water Molecule Interaction Energy Solvation Shell Chiral Molecule mRNA Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen Run-sheng and Ni Xiang-shan, Interaction of chiral molecules 1. L-L and L-D alanine two-body system, J.Mol.Sci., (in chinese) 4: 191 (1982).Google Scholar
  2. 2.
    Chen Run-sheng, Ni Xiang-shan, and Peng Zao-yuan, Interaction of chiral molecules 2. L-L and L-D alanine system: net charge, population and dipole moment, Biochem.Biophy.Prog., (in Chinese) 5: 35 (1982).Google Scholar
  3. 3.
    Chen Run-sheng, Rotational barrier of guanosine nucleoside about Z-DNA, J.Mol.Sci., (in Chinese) 3: 81 (1982).Google Scholar
  4. 4.
    Chen Run-shen, DNA unwinding and control of information expressions, J.Mol.Sci., (in Chinese) 1: 81 (1982).Google Scholar
  5. 5.
    E. Clementi, F. Cavallon, and R. Scordamaglia, Analytical potentials from ab initio computation for the interaction between biomolecules, 1. Water with amino acids, J.Am.Chem. Soc., 99: 5531 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Ragazzi, D. R. Ferro, and E. Clementi, Analytical potentials from ab initio computation for the interaction between bio-molecules 5. Formyl-triglycyl amide and water, J.Chem.Phys., 70: 1040 (1979).CrossRefGoogle Scholar
  7. 7.
    G. D. Smith and J. F. Griffin, Conformation of leu5-enkephalin from X-ray diffraction, Science., 199: 1214 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    W. S. Benedict, N. Gailar, and E. K. Plyler, Rotation-vibration spectra of deuterated water vapor, J. Chem.Phys., 24: 1139 (1956).CrossRefGoogle Scholar
  9. 9.
    J. J.Kaufman, Quantum chemical and physiocochemical influences on structure-activity relations and drug design, Int.J. Quantum Chem., 16: 221 (1979).CrossRefGoogle Scholar
  10. 10.
    O. Matsuoka, E. Clementi, and M. Yoshimine, CI study of the water dimer potential surface, J.Chem.Phys., 64: 1351 (1976).CrossRefGoogle Scholar
  11. 11.
    N. Metropolis, S. W. Rosenbluth, M. N. Rosenblutf, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J.Chem.Phys., 21: 1087 (1953).CrossRefGoogle Scholar
  12. 12.
    J. P. Valleau and S. G. WHittington, “Statistical mechanics part A: equilibrium techniques,” B. J. Berne ed., Plenum Press, N.Y., (1977).Google Scholar
  13. 13.
    S. Romano and E. Clementi, Monte Carlo simulation of the interaction between water and biomolecules: glycine and the corresponding zwitterion, Gazz.Chim.Ital., 198: 319 (1978).Google Scholar
  14. 14.
    D. Eisenbegr and W. Kauzmann, “The structure and properties of water,” Oxford U.P., N.Y., (1969).Google Scholar
  15. 15.
    S. Romano and E. Clementi, Monte Carlo simulation of water solvent with biomolecules: serine and the corresponding zwitterion, Int.J.Quantum Chem., 17: 1007 (1980).CrossRefGoogle Scholar
  16. 16.
    G. Bolas and E. Clementi, Methane in aqueous solution at 300 K, Chem.Phys.Lett., 82: 147 (1981).CrossRefGoogle Scholar
  17. 17.
    Chen Run-sheng, Dynamic model of translation phase, Scientia Sinica (series B) 10: 1044 (1982).Google Scholar
  18. 18.
    Chen Run-sheng and Ni Xian-shan, Molecular configuration and macroscopic dynamic structure of protein, KEXUE TONGBAO 28: 96 (1983).Google Scholar
  19. 19.
    Ni Xian-shan and Chen Run-sheng, Studies on evolution of dynamic structure of protein synthesis, KEXUE TONGBAO 28: 244 (1983).Google Scholar
  20. 20.
    G. Nicolis and I. Prigogine, “Self-organization in nonequilibrium system,” John Wiley & Sons, N.Y. (1977).Google Scholar
  21. 21.
    P. Glansdorff and I. Prigogine, “Thermodynamics of structure, stability and fluctuations,” Wiley-Interscience, N.Y. (1971).Google Scholar
  22. 22.
    Xu Jin-hua and Ding Da-fu, Replication of biological macromolecules and formation of dissipative structures, Scientia Sinica 22: 1206 (1979).Google Scholar
  23. 23.
    CRC Handbook of Biochemistry, selected data for Molecular Biology,“H. A. Sober and R. A. Harte, ed., CRC Press (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Run-sheng Chen
    • 1
  • Xiang-shan Ni
    • 1
  • Xiu-fan Shi
    • 2
  1. 1.Institute of BiophysicsAcademia SinicaBeijingChina
  2. 2.Kunming Institute of ZoologyAcademia SinicaKunmingChina

Personalised recommendations