Taurine and Photoreceptor Structure: Biochemical and Electrophysiological Studies

  • H. Pasantes-Morales
  • O. Quesada
  • A. Picones
  • R. López-Escalera
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 217)

Abstract

The retina has proved to be one of the most useful experimental models for studies on the physiological role of taurine in animal cells. Some features of the retina, including its large content of taurine, the association of taurine with photoreceptors and particularly, photoreceptor vulnerability to taurine deficiency, have importantly contributed to the advancement in the search for taurine function.

Keywords

Outer Segment Retinal Degeneration Retina1 Degeneration Taurine Level Sodium Gluconate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baylor, D.A., and Fourtes, M.G., 1970, Electrical responses of single cones in the retina of the turtle, J. Physiol. Lond., 207:77–92.PubMedGoogle Scholar
  2. 2.
    Berson, E.L., Hayes, R.C., Robin, A.R., Schmidt, S.Y., Watson, G., 1976, Retinal degeneration in cats fed casein II. Supplementation with methionine, cysteine and taurine, Invest. Opthalm. Vis. Sci., 15:52–58.Google Scholar
  3. 3.
    Bettger, W.J., and O’Dell, B.C., 1982, A critical physiological role of zinc in the structure and function of biomembranes, Life Sci., 28:1425–1438.CrossRefGoogle Scholar
  4. 4.
    Cohen, A.I., 1971, Electron microscope observations on form changes in photoreceptor outer segments and their saccules in response to osmotic stress, J. Cell Biol., 48:547–565.PubMedCrossRefGoogle Scholar
  5. 5.
    Geggel, H.S., Ament, M.E., Heckenlively, J.R., Martin, D.A., Martin, D.S., and Kopple, J.D., 1985, Nutritional requirements for taurine in patients receiving long term parenteral nutrition, New Eng. J. Med., 312:142–146.PubMedCrossRefGoogle Scholar
  6. 6.
    Hayes, K.C., Carey, R.E., and Schmidt, S.Y., 1975, Retinal degeneration associated with taurine deficiency in the cat, Science, 188:949–951.PubMedCrossRefGoogle Scholar
  7. 7.
    Laure-Dupree, A.E., and Bridges, D.B., 1982, Changes in retinal morphology and vitamin A metabolism as a consequence of decreased zinc availability, Retina, 2:294–304.CrossRefGoogle Scholar
  8. 8.
    Naka, K., and Rushton, W.A., 1966, S-potentials from luminosity units in the retina fish (Cyprinidae), J. Physiol. Lond., 185:587–599.PubMedGoogle Scholar
  9. 9.
    Nakashima, T., Takino, T., and Kuriyama, K., 1983, Therapeutic and prophylactic effects of taurine administration on experimental liver injury, Prog. Clin. Biol. Res., 125:449.PubMedGoogle Scholar
  10. 10.
    Pasantes-Morales, H., Ademe, R.M., and Quesada, O., 1981, Protective effect of taurine on the light induced disruption of isolated frog rod outer segments, J. Neurosci. Res., 6:337–346.PubMedCrossRefGoogle Scholar
  11. 11.
    Pasantes-Morales, H., Quesada, O., Carabez, A., and Huxtable, R.J., 1983, Effect of taurine transport antagonists, guanidino ethanesulfonate and β-alanine on the morphology of the rat retina, J. Neurosci. Res., 9:135–146.PubMedCrossRefGoogle Scholar
  12. 12.
    Pasantes-Morales, J., and Cruz C, 1985, Taurine and hypotaurine inhibit light-induced lipid peroxidation and protect rod outer segment structure, Brain Res., 330:154–157.PubMedCrossRefGoogle Scholar
  13. 13.
    Pasantes-Morales, H., Wright, C.E., and Gaull, G.E., 1985, Taurine protection to lymphoblastoid cells from iron ascorbate induced damage, Biochem. Pharmacol., 34:2205–2207.PubMedCrossRefGoogle Scholar
  14. 14.
    Robinson, W.G., Kuwabara, T., and Bieri, J.G., 1982, The roles of vitamin E and unsaturated fatty acids in the visual process, Retina, 2:263–281.CrossRefGoogle Scholar
  15. 15.
    Schmidt, S.Y., Berson, E.L., Watson, G., and Huang, C., 1977, Retinal degeneration in cats fed casein. III. Taurine deficiencey and ERG amplitudes, Invest. Ophthalm., 16:673–684.Google Scholar
  16. 16.
    Sturman, J.A., Wen, G.Y., Wisniewski, H.M., and Neuringer, M., 1984, Retinal degeneration in primates raised on a synthetic human infant formula, Int. J. Devel. Neurosci., 2:121–128.CrossRefGoogle Scholar
  17. 17.
    Voaden, M.J., 1978, The localization and metabolism of neuroactive aminoacids in the retina, in: “Amino Acids as Chemical Transmitters”, F. Fonnun, Ed., Plenum Press, New York, pp. 257–274.CrossRefGoogle Scholar
  18. 18.
    Wheeler, T.G., Benolken, R.M., and Anderson, R.E., 1975, Visual membrane: specificity of fatty acid precursors for the electrical response to illumination of the rat retina, Science, 188:131–134.CrossRefGoogle Scholar
  19. 19.
    Wiegand, R.D., Giusto, N.M., Rapp, L.M., and Anderson, R.E., 1983, Evidence of rod outer segment lipid peroxidation following constant illumination of the rat retina, Invest. Ophthalm. Vis. Sci., 10:1433–1439.Google Scholar
  20. 20.
    Willmore, L.J., and Rubin, J.J., 1982, Formation of malonaldehyde and focal edema induced by subpial injection of FeCl2 into rat isocortex, Brain Res., 246:113–119.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • H. Pasantes-Morales
    • 1
  • O. Quesada
    • 1
  • A. Picones
    • 1
  • R. López-Escalera
    • 1
  1. 1.Instituto de Fisiología CelularUniversidad Nacional Autońoma de MéxicoMéxico, D.F.México

Personalised recommendations