Skip to main content

Renal Taurine Transport — Recent Developments

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 217))

Abstract

The renal proximal tubule, with its brush border surface is the site of the active accumulation of all amino acids, including taurine (19). Following filtration at the glomeru-lus, taurine resides in the ultrafiltrate of plasma which passes by the apical or brush border surface of the tubule. As in many other biological membranes, the transfer of taurine across the brush border membrane is Na+-dependent (5,20) and requires external Cl (6). This transport of taurine can best be studied by employing isolated renal brush border membrane vesicles (BBMV) which permit an evaluation of factors which influence the uptake of taurine both in vitro by changing the chemical composition of the incubation medium and in vivo by exposure of animals to various manipulations (4–5). Our group has been interested in establishing how renal amino acid transport mechanisms adapt to changes in the level of taurine or its precursors in the diet. To carry out these studies, a rat model has been used and the accumulation of taurine by BBMV has been measured.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boge, G., and Regal, A., 1981, A chloride requirement for Na+-dependent amino acid transport by brush border membrane vesicles isolated from the intestine of a mediterranean telost (Boops salpa), J. Biol. Chem. 16:455–461.

    Google Scholar 

  2. Brasitus, T.A., Tall, A.R., and Schachter, D., 1980, Membranes studied by differential scanning calorimetry and fluorescence polarization, Biochemistry 19:1256–1261.

    Article  PubMed  CAS  Google Scholar 

  3. Chapman, D., Gomez-Fernandez, J.C., and Goni, F.M., 1979, Intrinsic protein-lipid interactions. Physical and biochemical evidence, FEBS Lett. 98:211–223.

    Article  PubMed  CAS  Google Scholar 

  4. Chesney, R.W., Friedman, A.L., Albright, P.W., and Gusowski, N., 1982, Fasting reverses the renal adaptation to altered dietary amino acid intake, Proc. Soc. Exp. Biol. Med. 170:493–501.

    Article  PubMed  CAS  Google Scholar 

  5. Chesney, R.W., Gusowski, N., and Friedman, A.L., 1983, Renal adaptation to altered dietary sulfur amino acid intake occurs at luminal brush border membrane, Kidney Int. 24:588–594.

    Article  PubMed  CAS  Google Scholar 

  6. Chesney, R.W., Gusowski, N., Dabbagh, S., Theissen, M., Padilla, M., and Diehl, A., 1985, Factors affecting the transport of ß-amino acids in rat renal brush border membrane vesicles: The role of external chloride, Biochim. Biophys. Acta. 812:702–712.

    Article  PubMed  CAS  Google Scholar 

  7. Chesney, R.W., Gusowski, N., and Dabbagh, S., 1985, Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids, J. Clin. Invest. 76:2213–2221.

    Article  PubMed  CAS  Google Scholar 

  8. Chesney, R.W., 1985, Taurine: biological role and clinical perspectives, Adv. Pediatr, 32:1–42.

    PubMed  CAS  Google Scholar 

  9. Chesney, R.W., Gusowski, N., Padilla, M., and Lippincott, S., 1986, Altered intake of dietary sulfur amino acids: Effect on renal brush border membrane transport of several amino acids and sulfate. Am. J. Physiol. 251:F125–F132.

    PubMed  CAS  Google Scholar 

  10. Chesney, R.W., Gusowski, N., Zelikovic, I., and Lippencott, S., 1986, Developmental aspects of renal ß-amino acid transport V: Brush border membrane transport in nursing animals — effect of age and diet, Pediatr. Res. 2:890–894.

    Article  Google Scholar 

  11. Corcelli, A., and Storcelli, C., 1983, The role of potassium and chloride ions on the Na+-acidic amino acid co-transport system in rat intestinal brush border membranes, Biochim. Biophys. Acta. 732:24–31.

    Article  PubMed  CAS  Google Scholar 

  12. Eveloff, J., Fong, J., and Calamin, J., 1986, Effects of hyperosmolarity and phorbolesters in cation fluxes in medullary thick ascending limb cells, Kidney Int. 29:346.

    Google Scholar 

  13. Friedman, A.L., Albright, P.W., and Chesney, R.W., 1981, Dietary adaptation of taurine transport in rat renal epithelium, Life Sci. 29:2415–2419.

    Article  PubMed  CAS  Google Scholar 

  14. Friedman, A.L., Albright, P.W., Gusowski, N., Padilla, M., and Chesney, R.W., 1983, Renal adaptation to alteration in dietary amino acid intake, Am. J. Physiol. 245:F159–F166.

    PubMed  CAS  Google Scholar 

  15. Jain, M.K., 1980, Phase properties of bilayers, in “introduction to Biological Membranes,” Jain, M.K., and Wagner, R.C., (eds.) Wiley, New York, pp. 53–175.

    Google Scholar 

  16. King, P.A., Bayenbach, K.W., and Goldstein, L., 1982, Taurine transport by isolated flounder renal tubules, J. Expl. zoo. 223:103–114.

    Article  CAS  Google Scholar 

  17. Larsen, M., and Spring, K.R., 1983, Bumetanide inhibition of NaCl transport of Necturus gall bladder, J. Memb. Biol. 74:123–132.

    Article  Google Scholar 

  18. LeGrimellec, C., Giocondi, M.C., Carriere, B., Carriere, S., and Cardinal, J., 1982, Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney, Am. J. Physiol. 242:F246–F253.

    CAS  Google Scholar 

  19. Mitch, W.E., and Chesney, R.W., 1983, Amino acid metabolism by the kidney, Mineral Electrolyte Metab. 9:190–206.

    CAS  Google Scholar 

  20. Rozen, R., Tenenhouse, H.S., and Scriver, C.R., 1979, Taurine transport in renal brush border membrane vesicles, Biochem. J. 180:245–248.

    PubMed  CAS  Google Scholar 

  21. Rozen, R., and Scriver, C.R., 1982, Renal transport of taurine adapts to perturbed taurine homeostasis, Proc. Natl. Acad. Sci., U.S.A., 79:2101–2105.

    Article  PubMed  CAS  Google Scholar 

  22. Schaffer, J.E., and Kocsis, J.J., 1981, Taurine mobilizing effects of β-alanine and other inhibitors of taurine transport, Life Sci. 28:2727–2736.

    Article  Google Scholar 

  23. Trachtman, H., Barbos, R., Sturman, J., and Finberg, L., 1986, Taurine is an osmoprotective molecule, no longer idiogenic in chronic hypematremic dehydration, Pediatr. Res. 20:335A.

    Google Scholar 

  24. Wright, S.H., Krasne, S., Klippen, I., Wright, E.M., 1981, Na+ dependent transport of dicarboxylic acid cycle intermediates by brush border membranes, effects of fluorescence of a potential sensitive cyanide dye, Biochim. Biophys. Acta. 64:767–778.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chesney, R.W. et al. (1987). Renal Taurine Transport — Recent Developments. In: Huxtable, R.J., Franconi, F., Giotti, A. (eds) The Biology of Taurine. Advances in Experimental Medicine and Biology, vol 217. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0405-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0405-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0407-2

  • Online ISBN: 978-1-4899-0405-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics