Renal Taurine Transport — Recent Developments

  • Russell W. Chesney
  • Israel Zelikovic
  • Aaron L. Friedman
  • Shermine Dabbagh
  • Shirley Lippincott
  • Naomi Gusowski
  • Elizabeth Stjeskal-Lorenz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 217)

Abstract

The renal proximal tubule, with its brush border surface is the site of the active accumulation of all amino acids, including taurine (19). Following filtration at the glomeru-lus, taurine resides in the ultrafiltrate of plasma which passes by the apical or brush border surface of the tubule. As in many other biological membranes, the transfer of taurine across the brush border membrane is Na+-dependent (5,20) and requires external Cl (6). This transport of taurine can best be studied by employing isolated renal brush border membrane vesicles (BBMV) which permit an evaluation of factors which influence the uptake of taurine both in vitro by changing the chemical composition of the incubation medium and in vivo by exposure of animals to various manipulations (4–5). Our group has been interested in establishing how renal amino acid transport mechanisms adapt to changes in the level of taurine or its precursors in the diet. To carry out these studies, a rat model has been used and the accumulation of taurine by BBMV has been measured.

Keywords

Brush Border Brush Border Membrane Brush Border Membrane Vesicle Sulfur Amino Acid Taurine Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boge, G., and Regal, A., 1981, A chloride requirement for Na+-dependent amino acid transport by brush border membrane vesicles isolated from the intestine of a mediterranean telost (Boops salpa), J. Biol. Chem. 16:455–461.Google Scholar
  2. 2.
    Brasitus, T.A., Tall, A.R., and Schachter, D., 1980, Membranes studied by differential scanning calorimetry and fluorescence polarization, Biochemistry 19:1256–1261.PubMedCrossRefGoogle Scholar
  3. 3.
    Chapman, D., Gomez-Fernandez, J.C., and Goni, F.M., 1979, Intrinsic protein-lipid interactions. Physical and biochemical evidence, FEBS Lett. 98:211–223.PubMedCrossRefGoogle Scholar
  4. 4.
    Chesney, R.W., Friedman, A.L., Albright, P.W., and Gusowski, N., 1982, Fasting reverses the renal adaptation to altered dietary amino acid intake, Proc. Soc. Exp. Biol. Med. 170:493–501.PubMedCrossRefGoogle Scholar
  5. 5.
    Chesney, R.W., Gusowski, N., and Friedman, A.L., 1983, Renal adaptation to altered dietary sulfur amino acid intake occurs at luminal brush border membrane, Kidney Int. 24:588–594.PubMedCrossRefGoogle Scholar
  6. 6.
    Chesney, R.W., Gusowski, N., Dabbagh, S., Theissen, M., Padilla, M., and Diehl, A., 1985, Factors affecting the transport of ß-amino acids in rat renal brush border membrane vesicles: The role of external chloride, Biochim. Biophys. Acta. 812:702–712.PubMedCrossRefGoogle Scholar
  7. 7.
    Chesney, R.W., Gusowski, N., and Dabbagh, S., 1985, Renal cortex taurine content regulates renal adaptive response to altered dietary intake of sulfur amino acids, J. Clin. Invest. 76:2213–2221.PubMedCrossRefGoogle Scholar
  8. 8.
    Chesney, R.W., 1985, Taurine: biological role and clinical perspectives, Adv. Pediatr, 32:1–42.PubMedGoogle Scholar
  9. 9.
    Chesney, R.W., Gusowski, N., Padilla, M., and Lippincott, S., 1986, Altered intake of dietary sulfur amino acids: Effect on renal brush border membrane transport of several amino acids and sulfate. Am. J. Physiol. 251:F125–F132.PubMedGoogle Scholar
  10. 10.
    Chesney, R.W., Gusowski, N., Zelikovic, I., and Lippencott, S., 1986, Developmental aspects of renal ß-amino acid transport V: Brush border membrane transport in nursing animals — effect of age and diet, Pediatr. Res. 2:890–894.CrossRefGoogle Scholar
  11. 11.
    Corcelli, A., and Storcelli, C., 1983, The role of potassium and chloride ions on the Na+-acidic amino acid co-transport system in rat intestinal brush border membranes, Biochim. Biophys. Acta. 732:24–31.PubMedCrossRefGoogle Scholar
  12. 12.
    Eveloff, J., Fong, J., and Calamin, J., 1986, Effects of hyperosmolarity and phorbolesters in cation fluxes in medullary thick ascending limb cells, Kidney Int. 29:346.Google Scholar
  13. 13.
    Friedman, A.L., Albright, P.W., and Chesney, R.W., 1981, Dietary adaptation of taurine transport in rat renal epithelium, Life Sci. 29:2415–2419.PubMedCrossRefGoogle Scholar
  14. 14.
    Friedman, A.L., Albright, P.W., Gusowski, N., Padilla, M., and Chesney, R.W., 1983, Renal adaptation to alteration in dietary amino acid intake, Am. J. Physiol. 245:F159–F166.PubMedGoogle Scholar
  15. 15.
    Jain, M.K., 1980, Phase properties of bilayers, in “introduction to Biological Membranes,” Jain, M.K., and Wagner, R.C., (eds.) Wiley, New York, pp. 53–175.Google Scholar
  16. 16.
    King, P.A., Bayenbach, K.W., and Goldstein, L., 1982, Taurine transport by isolated flounder renal tubules, J. Expl. zoo. 223:103–114.CrossRefGoogle Scholar
  17. 17.
    Larsen, M., and Spring, K.R., 1983, Bumetanide inhibition of NaCl transport of Necturus gall bladder, J. Memb. Biol. 74:123–132.CrossRefGoogle Scholar
  18. 18.
    LeGrimellec, C., Giocondi, M.C., Carriere, B., Carriere, S., and Cardinal, J., 1982, Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney, Am. J. Physiol. 242:F246–F253.Google Scholar
  19. 19.
    Mitch, W.E., and Chesney, R.W., 1983, Amino acid metabolism by the kidney, Mineral Electrolyte Metab. 9:190–206.Google Scholar
  20. 20.
    Rozen, R., Tenenhouse, H.S., and Scriver, C.R., 1979, Taurine transport in renal brush border membrane vesicles, Biochem. J. 180:245–248.PubMedGoogle Scholar
  21. 21.
    Rozen, R., and Scriver, C.R., 1982, Renal transport of taurine adapts to perturbed taurine homeostasis, Proc. Natl. Acad. Sci., U.S.A., 79:2101–2105.PubMedCrossRefGoogle Scholar
  22. 22.
    Schaffer, J.E., and Kocsis, J.J., 1981, Taurine mobilizing effects of β-alanine and other inhibitors of taurine transport, Life Sci. 28:2727–2736.CrossRefGoogle Scholar
  23. 23.
    Trachtman, H., Barbos, R., Sturman, J., and Finberg, L., 1986, Taurine is an osmoprotective molecule, no longer idiogenic in chronic hypematremic dehydration, Pediatr. Res. 20:335A.Google Scholar
  24. 24.
    Wright, S.H., Krasne, S., Klippen, I., Wright, E.M., 1981, Na+ dependent transport of dicarboxylic acid cycle intermediates by brush border membranes, effects of fluorescence of a potential sensitive cyanide dye, Biochim. Biophys. Acta. 64:767–778.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Russell W. Chesney
    • 1
    • 2
  • Israel Zelikovic
    • 1
    • 2
  • Aaron L. Friedman
    • 1
    • 2
  • Shermine Dabbagh
    • 1
    • 2
  • Shirley Lippincott
    • 1
    • 2
  • Naomi Gusowski
    • 1
    • 2
  • Elizabeth Stjeskal-Lorenz
    • 1
    • 2
  1. 1.Pediatric Renal Disease Laboratory, Department of PediatricsThe University of Wisconsin-MadisonMadisonUSA
  2. 2.School of MedicineThe University of California-DavisDavisUSA

Personalised recommendations