Basal Concentration and Evoked Changes of Extracellular Taurine in the Rat Hippocampus in Vivo

  • R. M. del Rio
  • A. S. Herranz
  • J. M. Solis
  • O. Herreras
  • J. Lerma
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 217)


The brain extracellular fluid constitutes the microenvironment on which specific nervous tissue functions are highly dependent (27). Thus its composition should be strictly maintained. Cellular processes of secretion and uptake as well as the homeostatic mechanisms of blood and cerebrospinal fluid (CSF) probably contribute to buffering changes in the extracellular fluid composition evoked by cellular activities. The extracellular space is also the main medium of communication between nerve cells through which their chemical signals are transmitted. For these reasons, many studies have been performed to determine the “in vivo” extracellular fluid concentrations of neuroactive substances such as catecholamines, their metabolites (5) and ions (9), during basal and altered cellular activities, since such information will improve significantly our understanding of CNS physiology.


Dentate Gyrus Extracellular Fluid Nonlinear Regression Analysis Amino Acid Neurotransmitter Taurine Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baudry, M., and Lynch, G., 1979, Two glutamate binding sites in rat hippocampal membranes, Eur. J. Pharmacol., 57:283–285.PubMedCrossRefGoogle Scholar
  2. 2.
    Baylor, D.A. and Nicholls, J.G., 1969, Aftereffects of nerve impulse on signalling in the central nervous system of the leech, J. Physiol. (Lond.), 203:571–589.Google Scholar
  3. 3.
    Delgado, J.M.R., DeFeudis, F.V., Roth, R.H., Ryugo, D.K., and Mitruka, B.M., 1972, Dialytrode for long-term intracerebral perfusion in the awake monkeys, Arch. Int. Pharmacodyn. Therm., 198:9–21.Google Scholar
  4. 4.
    Delgado, J.M.R., Lerma, J., Martin del Rio, R., and Solis, J.M., 1984, Dialytrode technology and local profile of amino acids in the awake cat brain, J. Neurochem., 42:1218–1228.PubMedCrossRefGoogle Scholar
  5. 5.
    Gonon, F., Buda, M., and Pujol, J.F., 1984, Treated carbon fibre electrodes for measuring catechols and ascorbic acid., in: “Measurements of Neurotransmitter Release In Vivo”, C.A. Marsden ed., Wiley, New York, pp. 153–172.Google Scholar
  6. 6.
    Hablitz, J.J., and Lundervold, A., 1981, Hippocampal excitability and changes in extracellular potassium, Exp. Neurol., 71:410–420.PubMedCrossRefGoogle Scholar
  7. 7.
    Hamberger, A., Berthold, C.H., Jacobson, I., Karlsson, B., Lehmann, A., Nystrom, B., and Sandberg, N., 1985, In vivo brain dialysis of extracellular non transmitter and putative transmitter amino acids, in: “In Vivo Perfusion and Release of Neuroactive Substances”, A. Baydn and R. Drucher-Colin eds., Academic Press, Orlando, Florida, pp. 119–139.CrossRefGoogle Scholar
  8. 8.
    Hamberger, A., and Nystrom, B., 1984, Extra-and intracellular amino acids in the hippocampus during development of hepatic encephalopathy, Neurochem. Res., 9:1181–1192.PubMedCrossRefGoogle Scholar
  9. 9.
    Heinemann, U., Lux, H.D., and Gutnlch, M.J., 1978, Changes in extracellular free calcium and potassium activity in the somatosensory cortex of cats, in: “Abnormal Neuronal Discharges”, N. Chalazonitis and M. Boisson eds., Raven Press, New York, pp. 329–345.Google Scholar
  10. 10.
    Herranz, A.S., Cristin, J.L.R., Lerma, J., and Martin del Rio, R., 1985, Incremento de sensibilidad en los analisis por CLAE de los OPA-amino-acidos uBando como reactivo de derivacion el àcido 3-mercaptopropionico, Resumenes de la Reunion Cientifica Anual del Grupo de Cromatografla y Tecnicas Afines, R.S.E.Q., Sevilla, pp. 58–59.Google Scholar
  11. 11.
    Hertz, L., and Schousboe, A., 1980, Interactions between neurons and astrocytes in the turnover of GABA and glutamate, Brain Res. Bull., 5, Suppl. 2:389–395.CrossRefGoogle Scholar
  12. 12.
    Jacobson, I., Sandberg, M., and Hamberger, A., 1985, Mass transfer in brain dialysis devices-a new method for the estimation of the extracellular amino acids concentration, J. Neurosci. Meth., 15:262–268.CrossRefGoogle Scholar
  13. 13.
    Johnston, G.A.R., Kennedy, S.M.E., and Twitchin, B., 1979, Action of the neurotoxin kainic acid on high affinity uptake of L-glutamic acid in rat brain slices, J. Neurochem., 32:121–127.PubMedCrossRefGoogle Scholar
  14. 14.
    Johnston, G.A.R., Krogsgaard-Larsen, P., Stephanson, A.L., and Twitchin B., 1976, Inhibition of the uptake of GABA and related amino acids in the rat brain slices by the optical isomers of nipecotic acid, J. Neurochem., 26:1029–1032.PubMedCrossRefGoogle Scholar
  15. 15.
    Kontro, P., and Oja, S.S., 1981, Hypotaurine transport in brain slices: comparison with taurine and GABA, Neurochem. Res., 6:1179–1191.PubMedCrossRefGoogle Scholar
  16. 16.
    Kontro, P., and Oja, S.S., 1983, Mutual interaction in the transport of taurine, hypotaurine and GABA in brain slices, Neurochem. Res., 8:1377–1387.PubMedCrossRefGoogle Scholar
  17. 17.
    Lahdesmaki, P., and Oja, S.S., 1973, On the mechanism of taurine transport at brain cell membranes, J. Neurochem., 20:1411–1417.PubMedCrossRefGoogle Scholar
  18. 18.
    Lerma, J., Herranz, A.S., Herreras, O., Abraira, V., and Martin del Rio, R., 1986, In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis, Brain Research, In Press.Google Scholar
  19. 19.
    Lerma, J., Herranz, A.S., Herreras, O., Munoz, D., Solis, J.M., del Rio, R.M., and Delgado, J.M.R., 1985, γ-aminobutyric acid greatly increases the in vivo extracellular taurine in the rat hippocampus, J. Neurochem., 44:983–986.PubMedCrossRefGoogle Scholar
  20. 20.
    Lerma, J., Herreras, O., Herranz, A.S., Munoz, D., and del Rio, R.M., 1984, In vivo effects of nipecotic acid on levels of extracellular GABA and taurine, and hippocampal excitability, Neuropharmacology, 23:595–598.PubMedCrossRefGoogle Scholar
  21. 21.
    Lerma, J., Herreras, O., and Martin del Rio, R., 1985, Electrophysiological evidence that nipecotic acid can be used in vivo as a false transmitter, Brain Research, 335:377–380.PubMedCrossRefGoogle Scholar
  22. 22.
    Lombardini, J.B., 1976, Regional and subcellular studies in taurine in the central nervous system, in: “Taurine”, R. Huxtable and A. Barbeau eds., Raven Press, New York, pp. 311–326.Google Scholar
  23. 23.
    Madtes, P., Jr., 1984, Chloride ions preferentially mask high-affinity GABA binding sites, J. Neurochem., 43:1434–1437.PubMedCrossRefGoogle Scholar
  24. 24.
    McBride, W.J., and Frederickson, R.C.A., 1978, Neurochemical and neurophysiological evidence for a role of taurine as an inhibitor neurotransmitter in the cerebellum of the rat, in: “Taurine and Neurological Disorders”, A. Barbeau and R.J. Huxtable, eds., Raven Press, New York, pp. 415–527.Google Scholar
  25. 25.
    Moroni, F. Mulas, A., Moneti, G., and Pepeu, G., 1982, In vivo changes in GABA output from the cerebral cortex Induced by inhibitors of GABA uptake and metabolism, J. Neurochem., 39:582–585.PubMedCrossRefGoogle Scholar
  26. 26.
    Munoz, M.D., Herreras, O., Herranz, A.S., Solis, J.M., Martin del Rio, R., and Lerma, J., 1986, Effects of dihydrokainic acid on extracellular amino acids and neuronal excitability in the in vivo rat hippocampus, Neuropharmacology, In Press.Google Scholar
  27. 27.
    Nicholson, C., 1980, Dynamics of the Brain Cells Microenvironment Neurosci. Res. Prog. Bull., MIT Press, Cambridge, Massachusettes, 18:322.Google Scholar
  28. 28.
    Oja, S., and Kontro, P., 1978, Neurotransmitter actions of taurine in the central nervous system, in: “Taurine and Neurological Disorders”, A. Barbeau and R.J. Huxtable eds., Raven Press, New York, pp. 181–200.Google Scholar
  29. 29.
    Oja, S.S., Korpi, E.R., Holopainen, I., and Kontro, P., 1985, Mechanisms of stimulated taurine release from nervous tissue, in: “Taurine, Biological Actions and Clinical Perspectives”, S.S. Oja, L. Ahtee, P. Kontro, and M.K. Paasonen eds, Alan R. Liss, New York, pp. 237–247.Google Scholar
  30. 30.
    Philippu, A., 1985, The use of push-pull cannula for superfusing various hypothalamic areas in anaesthetized and conscious, freely moving animals, in: “In Vivo Perfusion and Release of Neuroactives Substances”, A. Bayón and R. Drucker-Colin eds., Academic Press, Orlando, Florida, pp. 221–232.CrossRefGoogle Scholar
  31. 31.
    Sandberg, M., and Lindstrom, S., 1983, Amino acids in the dorsal lateral geniculate nucleus of the cat — collection in vivo, J. Neurosci, Meth., 9:65–74.CrossRefGoogle Scholar
  32. 32.
    Seilstrom, A., and Hamberger, A., 1977, Potassium-stimulated γ-aminobutyric acid release from neurons and glia, Brain Research, 119:189–198.CrossRefGoogle Scholar
  33. 33.
    Snedecor, G.W., and Cochran, W.G. 1980, Metodos Estadisticos, CECSA, Mexico, pp. 703.Google Scholar
  34. 34.
    Soils, J. M., Herranz, A.S., Herreras, O., Hǔnoz, M.D., Martín del Río, R., and Lerma, J., 1986, Variation of potassium ion concentrations in the rat hippocampus specifically affects extracellular taurine levels, Neurosci. Lett., 66:263–268.CrossRefGoogle Scholar
  35. 35.
    Storm-Mathisen, J., 1978, Localization of putative transmitter in the hippocampal formation, in: “CIBA Foundation Symposium, Functions of the Septo-Hippocampal System’, Elsevier, Amsterdam, pp. 49–79.Google Scholar
  36. 36.
    Tossman, U., Eriksson, S., Delin, A., Hagenfeldt, L., Law, D., and Ungerstedt, U., 1983, Brain amino acids measured by intracerebral dialysis in portacaval shunted rats, J. Neurochem., 41:1046–1051.PubMedCrossRefGoogle Scholar
  37. 37.
    van der Heyden, J.A.M., Venema, K., and Korf, J., 1985, Push-pull perfusion studies on the in vivo release of endogenous transmitter and non-transmitter amino acids in the rat brain, in: “In vivo Perfusion and Release of Neuroactive Substances”, A. Bayón and R. Drucker-Colín eds., Academic Press, Orlando, Florida, pp. 51–68.CrossRefGoogle Scholar
  38. 38.
    Werling, L.L., and Nadler, J.V., 1982, Complex binding of L-[3H] glutamate to hippocampal synaptic membranes in the absence of sodium, J. Neurochem., 38:1050–1062.PubMedCrossRefGoogle Scholar
  39. 39.
    Wolfensberger, M., 1984, Gas-Chromatographic and mass-fragmentographic measurement of amino acid released into brain perfusate collected in vivo by push-pull cannula techniques, in: “Measurement of Neurotransmitter Release In Vivo”, CA. Marsden ed., Wiley, New York, pp. 39–62.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • R. M. del Rio
    • 1
  • A. S. Herranz
    • 1
  • J. M. Solis
    • 1
  • O. Herreras
    • 1
  • J. Lerma
    • 1
  1. 1.Depto. InvestigacionHosp. “Ramón y Cajal”, CrtaMadridSpain

Personalised recommendations