A Taurine Receptor Model: Taurine-Sensitive Olfactory Cells in the Lobster

  • R. A. Gleeson
  • H. G. Trapido-Rosenthal
  • W. E. S. Carr
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 217)


Taurine is a widely distributed amino acid which has been associated with a broad range of physiological actions, particularly in excitable tissues. These include, for example, a role in heart function (17), retinal function (24,27,31,32), and neural development (9,38,39). In addition, neurophysiological and biochemical evidence has suggested that taurine acts as an inhibitory neurotransmitter or neuromodulator in the central nervous system (21,26,29,30). In no case, however, has the specific function of taurine been elucidated, and progress towards deciphering its role in these various systems has been considerably retarded by the lack of selective agonists and antagonists. A major factor which has hampered development of such probes has been the absence of a receptor model that is specifically sensitive to taurine.


Glycine Betaine Phosphonic Acid Spiny Lobster Distribute Amino Acid Homarus Americanus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ache, B.W., Gleeson, R.A., and Thompson, H.D., in press, Mechanisms of interaction between odorants at olfactory receptor cells, in: “Proceedings of the Ninth International Symposium on Olfaction and Taste”, The New York Academy of Sciences, New York.Google Scholar
  2. 2.
    Adamek, G.D., Gesteland, R.C., Mair, R.G., and Oakley, B., 1984, Transduction physiology of olfactory receptor cilia, Brain Res., 310:87–97.PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson, P.A.V., and Ache, B.W., 1985, Voltage-and current-clamp recordings of the receptor potential in olfactory receptor cells in situ, Brain Res., 338:273–280.PubMedCrossRefGoogle Scholar
  4. 4.
    Carr, W.E.S., Ache, B.W., and Gleeson, R.A., 1987, Chemoreceptors of crustaceans: Similarities to receptors for neuroactive substances in internal tissues, Environ. Health Perspect., in press.Google Scholar
  5. 5.
    Curtis, D.R., Holsi, L., and Johnston, G.A.R., 1968, A pharmacological study of the depression of spinal neurons by glycine and related amino acids, Exp. Brain Res., 6:1–18.PubMedCrossRefGoogle Scholar
  6. 6.
    Derby, C.D., and Atema, J., 1982, Narrow-spectrum chemoreceptor cells in the walking legs of the lobster Homarus americanus: Taste specialists, J. Comp. Physiol., 146:181–189.CrossRefGoogle Scholar
  7. 7.
    Fuzessery, Z.M., Carr, W.E.S., and Ache, B.W., 1978, Antennular chemosensitivity in the spiny lobster, Panulirus argus: Studies of taurine sensitive receptors, Biol. Bull., 154:226–240.CrossRefGoogle Scholar
  8. 8.
    Gant, Z.N., and Nauss, C.B., 1976, Uptake of taurine by human blood platelets: A possible model of the brain, in: “Taurine”, R.J. Huxtable and A. Barbeau, eds., Raven Press, New York, pp. 99–121.Google Scholar
  9. 9.
    Gaull, G.E., and Rassin, D.K., 1979, Taurine and brain development: Human and animal correlates, in: “Neural Growth and Differentiation”, E. Meisami and M.A.B. Brazier, eds., Raven Press, New York, pp. 461–477.Google Scholar
  10. 10.
    Gleeson, R.A., and Ache, B.W., 1985, Amino acid suppression of taurine-sensitive chemosensory neurons, Brain Res., 335:99–107.PubMedCrossRefGoogle Scholar
  11. 11.
    Grünert, U., and Ache, B. W., 1987, Fine structure of the olfactory (aesthetasc) sensilla of the spiny lobster, Chemical Senses, in press.Google Scholar
  12. 12.
    Haas, H.L., and Hosli, L., 1979, The depression of brainstem neurons by taurine and its interaction with strychnine and bicuculline, Brain Res., 52:399–402.CrossRefGoogle Scholar
  13. 13.
    Holopainen, I., and Kontro, P., 1984, Taurine and hypotaurine transport by a single system in cultured neuroblastoma cells, Acta Physiol. Scand., 122:381–386.PubMedCrossRefGoogle Scholar
  14. 14.
    Hruska, R.E., Huxtable, R.J., and Yamamura, H.I., 1978, High affinity, temperature-sensitive and sodium-dependent transport of taurine in rat brain, in: “Taurine and Neurological Disorders”, A. Barbeau and R.J. Huxtable, eds., Raven Press, New York, pp. 109–117.Google Scholar
  15. 15.
    Hruska, R E., Padjen, A., Bressler, R., and Yamamura, H.I., 1978, Taurine: Sodium-dependent, high-affinity transport into rat brain synaptosomes, Mol. Pharmacol., 14:77–85.PubMedGoogle Scholar
  16. 16.
    Huxtable, R.J., Laird, H.E., and Lippincott, S.E., 1979, The transport of taurine in the heart and the rapid depletion of tissue taurine content by guanidinoethylsulfonate, J. Pharmacol. Exp. Ther., 211:465–471.PubMedGoogle Scholar
  17. 17.
    Huxtable, R.J., and Sebring, L., 1983, Cardiovascular actions of taurine, in: “Sulfur Amino Acids: Biochemical and Clinical Aspects”, K. Kuriyama, R. Huxtable, and H. Iwata, eds., Alan R. Liss, New York, pp. 5–37.Google Scholar
  18. 18.
    Johnson, B.R., and Atema, J., 1983, Narrow-spectrum chemoreceptor cells in the antennules of the American lobster, Neurosci. Lett., 45:145–150.CrossRefGoogle Scholar
  19. 19.
    Johnson, B.R., Voigt, R., Borroni, P.F., and Atema, J., 1984, Response properties of lobster chemoreceptors: Tuning of primary taste neurons in walking legs, J. Comp. Physiol., 155:593–604.CrossRefGoogle Scholar
  20. 20.
    Kontro, P., 1984, Comparison of taurine, hypotaurine and ß-alanine uptake in brain synaptosomal preparations from developing and adult mouse, Int. J. Devl. Neuroscience, 2:465–470.CrossRefGoogle Scholar
  21. 21.
    Kontro, P., Korpi, E.R., Oja, O.S., and Oja, S.S., 1984, Modulation of noradrenaline uptake and release by taurine in rat cerebral slices, Neuroscience, 13:663–666.PubMedCrossRefGoogle Scholar
  22. 22.
    Kurachi, M., Yoshihara, K., and Aihara, H., 1983, Effect of taurine on depolarizations induced by L-glutamate and other excitatory amino acids in the isolated spinal cord of the frog, Japan. J. Pharmacol., 33:1247–1254.CrossRefGoogle Scholar
  23. 23.
    Laverack, M.S., and Ardill, D.J., 1965, The innervation of the aesthetasc hairs of Panulirus argus, Quart. J. Micr. Sci., 106:45–60.Google Scholar
  24. 24.
    Lin, C.T., Song, G.X., and Wu, J.Y., 1985, Is taurine a neurotransmitter in rabbit retina, Brain Res., 337:393–398.CrossRefGoogle Scholar
  25. 25.
    Lombardini, J.B., and Prien, S.D., 1983, Taurine binding by rat retinal membranes, Exp Eye Res., 37:239–250.PubMedCrossRefGoogle Scholar
  26. 26.
    Mandel, P., and Pasantes-Morales, H., 1978, Taurine in the nervous system, in: “Reviews of Neuroscience”, S. Ehrenpreis and I. Kopin, eds., Vol. 3, Raven Press, New York, pp. 157–193.Google Scholar
  27. 27.
    Mandel, P., Pasantes-Morales, H., and Urban, P.F., 1976, Taurine, a putative transmitter in retina, in: “Transmitters in the Visual Process”, S.L. Bonting, ed., Pergamon Press, New York, pp. 89–105.Google Scholar
  28. 28.
    Menco, B. Ph. M., 1980, Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory epithelial surfaces of frog, ox, rat and dog. II. Cell apices, cilia and microvilli, Cell Tissue Res., 211:5–29.PubMedGoogle Scholar
  29. 29.
    Okamoto, K., Kimura, H., and Sakai, Y., 1983, Evidence for taurine as an inhibitory neurotransmitter in cerebellar stellate interneurons: Selective antagonism by TAG (6-aminomethyl-3-methyl-4H,1,2,4-benzothiadiazine-l,l-dioxide), Brain Res., 265:163–168.PubMedCrossRefGoogle Scholar
  30. 30.
    Oja, S.S., and Kontro, P., 1983, Taurine, in: “Handbook of Neurochemistry”, A. Lajtha, ed., Vol. 3, Plenum Press, New York, pp. 501–533.Google Scholar
  31. 31.
    Pasantes-Morales, H., Ademe, R.M., and Quesada, O., 1981, Protective effect of taurine on the light-induced disruption of isolated frog outer segments, J. Neurosci. Res., 6:337–348.PubMedCrossRefGoogle Scholar
  32. 32.
    Pasantes-Morales, H., and Cruz, C., 1985, Taurine and hypotaurine inhibit light-induced lipid peroxidation and protect rod outer segment structure, Brain Res., 330:154–157.PubMedCrossRefGoogle Scholar
  33. 33.
    Quesada, O., Huxtable, R.J., and Pasantes-Morales, H., 1984, Effect of guanidinoethane sulfonate on taurine uptake by rat retina, J. Neurosci. Res., 11:179–186.PubMedCrossRefGoogle Scholar
  34. 34.
    Rhein, L.D., and Cagan, R.H., 1980, Biochemical studies of olfaction: Isolation, characterization, and odorant binding activity of cilia from rainbow trout olfactory rosettes, Proc. Natl. Acad. Sci. USA, 77:4412–4416.PubMedCrossRefGoogle Scholar
  35. 35.
    Schaffer, S.W., Kulakowski, E.C., and Kramer, J.H., 1982, Taurine transport by reconstituted membrane vesicles, in: “Taurine in Nutrition and Neurology, Adv. Exp. Med.”, R. Huxtable and H. Pasantes-Morales, eds., Vol. 139, Plenum Press, New York, pp. 143–160.CrossRefGoogle Scholar
  36. 36.
    Segawa, T., Inoue, A., Ochi, T., Nakata, Y., and Nomura, Y., 1982, Specific binding of taurine in central nervous system, in: “Taurine in Nutrition and Neurology, Adv. Exp. Med.”, R. Huxtable and H. Pasantes-Morales, eds., Vol. 139, Plenum Press, New York, pp. 311–324.CrossRefGoogle Scholar
  37. 37.
    Shepheard, P., 1974, Chemoreception in the antennule of the lobster, Homarus americanus, Mar. Behav. Physiol., 2:261–273.CrossRefGoogle Scholar
  38. 38.
    Sturman, J.A., Moretz, R.C., French, J.H., and Wisniewski, H.M., 1985, Taurine deficiency in the developing cat: Persistence of the cerebellar external granule cell layer, J. Neurosci. Res., 13:405–416.PubMedCrossRefGoogle Scholar
  39. 39.
    Sturman, J.A., Moretz, R.C., French, J.H., and Wisniewski, H.M., 1985, Postnatal taurine deficiency in the kitten results in a persistence of the cerebellar external granule cell layer: Correction by taurine feeding, J. Neurscl. Res., 13:521–528.CrossRefGoogle Scholar
  40. 40.
    Thompson, H., and Ache, B.W., 1980, Threshold determination for olfactory receptors of the spiny lobster, Mar. Behav. Physiol., 7:249–260.CrossRefGoogle Scholar
  41. 41.
    Trapido-Rosenthal, H.G., Gleeson, R.A., Carr, W.E.S., Lambert, S.M., and Milstead, M.L., 1986, Purinergic and taurinergic chemoreception in the spiny lobster: Physiology and biochemistry, Soc. Neurosci. Abst., 12:1353.Google Scholar
  42. 42.
    Trapido-Rosenthal, H.G., Gleeson, R.A., Carr, W.E.S., Lambert, S.M., and Milstead, M.L., in press, The biochemistry of the olfactory purinergic system, in: Proceedings of the Ninth International Symposium on Olfaction and Taste, The New York Academy of Sciences, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • R. A. Gleeson
    • 1
  • H. G. Trapido-Rosenthal
    • 1
  • W. E. S. Carr
    • 1
  1. 1.C.V. Whitney LaboratoryUniversity of FloridaSt. AugustineUSA

Personalised recommendations