Taurine Inhibits Wet-Dog Shakes and Hippocampal Seizures Induced by Opioid Peptides in Rats

  • Kanji Izumi
  • Motoaki Yoshida
  • Takeshi Koja
  • Eisuke Munekata
  • Takao Nakanishi
  • Takeo Fukuda
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 217)


Wet dog shakes (WDS) are paroxysmal shudders of head, neck and trunk. This behavior has been observed when dipping animals into cold water (41), application of xylene to the für (39) and tactile stimulation around ears (1). Pharmacological studies revealed that WDS can be produced by administration of thyrotropin-releasing hormone (9,24,29,41,42), 5-Hydroxytryptamine (3,12), or kainic acid (5,25). WDS are also known as a classical sign of morphine abstinence in rats (40,43). In 1976, Bloom et al. first reported that this shaking behavior was elicited by acute administration of β-endorphln into the lateral ventricle in rats. Similar observations were made in rats with enkephalin (15). In addition, it was found that epileptic discharges were provoked by the intraventricular (icv) injection of opioid peptides and WDS always accompanied the onset of seizure discharges (15,16,37). These findings suggest that there may be an association between electrical seizure activities and WDS.


Seizure Activity Opioid Peptide Aminobutyric Acid Intraventricular Injection Seizure Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Askew, H.R., Librecht, B.C., and Ratner, S.C., 1969, Effects of stimulus duration and repeated sessions on habituation on the head-shake response in the rat, J. Comp. Physiol. Psychol., 67:497–503.PubMedCrossRefGoogle Scholar
  2. 2.
    Barbeau, A., and Huxtable, R.J., eds., 1978, “Taurine and Neurological Disorders”, Raven Press, New York.Google Scholar
  3. 3.
    Bedard, P., and Pycock, C.J., 1977, ‘Wet-dog’ shake behaviour in the rat: a possible quantitative model of central 5-hydroxytryptamine activity, Neuropharmacology, 16:663–670.PubMedCrossRefGoogle Scholar
  4. 4.
    Bloom, F., Segal, D., Ling, N., and Giullemin, R., 1976, Endorphins: profound behavioral effects in rats suggest new etiological factors in mental illness, Science, 194:630–632.PubMedCrossRefGoogle Scholar
  5. 5.
    Collins, R.C., McLean, M., and Olney, J., 1980, Cerebral metabolic response to systemic kainic acid: 14-C-deoxyglucose studies, Life Sci., 27:855–862.PubMedCrossRefGoogle Scholar
  6. 6.
    Collu, R., Charpente, G., and Clermont, M.J., 1978, Antagonism by taurine of morphine induced growth hormone secretion, Canad. J. Neurol. Sci., 5:139–142.PubMedGoogle Scholar
  7. 7.
    Contreras, E., and Tamayo, L., 1984, Effects of taurine on tolerance to and dependence on morphine in mice, Arch. Int. Pharmacodyn., 267:224–231.PubMedGoogle Scholar
  8. 8.
    Corrigall, W.A., and Linseman, M.A., 1980, A specific effect of morphine on evoked activity in the rat hippocampal slice, Brain Res., 192:227–238.PubMedCrossRefGoogle Scholar
  9. 9.
    Costall, B., Hui, S.C.G., Metcalf, G., and Naylor, R.J., 1979, A study of the changes in motor behavior caused by TRH on intracerebral injection, Eur. J. Pharmacol., 53:143–150.PubMedCrossRefGoogle Scholar
  10. 10.
    Cowan, A., and Tortella, F.C., 1982, A quantitative analysis of the shaking behavior induced in rats by ß-endorphin and [D-Ala2, Met5] enkephalinamide, Life Sci., 30:171–176.PubMedCrossRefGoogle Scholar
  11. 11.
    Dingledlne, R., 1981, Possible mechanisms of enkephalin action of hippocampal CA1 pyramidal neurons, J. Neurosci., 1:1022–1035.Google Scholar
  12. 12.
    Drust, E.G., Sloviter, R.S., and Connor, J.D., 1979, Effect of morphine on ‘wet-dog’ shakes caused by cerebroventricular injection of serotonin, Pharmacology, 18:299–305.PubMedCrossRefGoogle Scholar
  13. 13.
    Dunwiddie, T., Mueller, A., Palmer, M., Stewart, J., and Hoffer, B., 1980, Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. I. effects on pyramidal cell activity, Brain Res., 184:311–330.PubMedCrossRefGoogle Scholar
  14. 14.
    Durelli, L., and Mutani, R., 1983, The current status of taurine in epilepsy, Clin. Neuropharmacology, 6:37–48.CrossRefGoogle Scholar
  15. 15.
    Frenk, H., Urca, G., and Liebenskind, J.C., 1978, Epileptic properties of leucine-and methlonine-enkephalin: comparison with morphine and reversibility by naloxone, Brain Res., 147:327–337.PubMedCrossRefGoogle Scholar
  16. 16.
    Henriksen, S.J., Bloom, F.E., McCoy, F., Ling, N., and Guillemln, R., 1978, β-Endorphin induces nonconvulsive limbic seizures, Proc. Natl. Acad. Sci. USA, 75:5221–5225.PubMedCrossRefGoogle Scholar
  17. 17.
    Huxtable, R.J., 1981, Insights on function: metabolism and pharmacology of taurine in the brain, in: “The Role of Peptldes and Amlno Acids as Neurotransmitters”, J.B. Lombardini, and A.D. Kenny, eds., Alan R. Liss, Inc., New York, pp.53–97.Google Scholar
  18. 18.
    Izumi, K., Donaldson, J. Minnich, J.L., and Barbeau, A., 1973, Ouabain-induced seizures in rats: suppressive effects of taurine and 7-aminobutyric acid, Canad. J. Physiol. Pharmacol., 51:885–889.CrossRefGoogle Scholar
  19. 19.
    Izumi, K., Igisu, H., and Fukuda, T., 1974, Suppression of seizures by taurine — specific or non-specific?, Brain Res., 76:171–173.PubMedCrossRefGoogle Scholar
  20. 20.
    Izumi, K., Kishita, C., Koja, T., Shimizu, T., Fukuda, T., and Huxtable, R.J., 1985, Effects of guanidinoethane sulfonate and taurine on electroshock seizures in mice, in: “Guanidines”, A. Mori, B.D. Cohen, and A. Lowenthal, eds., Plenum Publishing Corporation, New York, pp. 227–234.CrossRefGoogle Scholar
  21. 21.
    Izumi, K., Munekata, E., Barbeau, A., Nakanshi, T., Yoshida, M., Yamamoto, H., and Fukuda, T., 1982, Effects of taurine on tolerance to [D-Ala2, Met5]enkphalinamide in rats, Eur. J. Pharmacol., 82:55–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Izumi, K., Munekata, E., Yamamoto, H., Nakanishi, T., and Barbeau, A., 1980, Effects of taurine and 7-aminobutyric acid on akinesia and analgesia induced by D-Ala2-Met-enkephalinamide in rats, Peptides, 1:139–146.PubMedCrossRefGoogle Scholar
  23. 23.
    Izumi, K., Munekata, E., Yamamoto, H., Nakanishi, T., and Barbeau, A., 1980, Possible involvements of taurine and GABA in morphine-like peptide actions, Int. J. Neurol., 14:253–268.PubMedGoogle Scholar
  24. 24.
    Kalivas, P.W., and Horita, A., 1980, Thyrotropin-releasing hormone: neurogenesls of actions in the pentobarbital narcotized rat, J. Pharmacol. Exp. Ther., 212:203–210.PubMedGoogle Scholar
  25. 25.
    Lanthorn, T., and Isaacson, R.L., 1978, Studies of kainate-induced wet-dog shakes in the rat, Life Sci., 22:171–178.PubMedCrossRefGoogle Scholar
  26. 26.
    Le Gal La Salle, G., and Cavalheiro, E.A., 1981, Stimulation of septal and amygldaloid nuclei: EEG and behavioral responses during early development of kindling with special reference to wet-dog shakes, Exp. Neurol., 74:717–727.PubMedCrossRefGoogle Scholar
  27. 27.
    Lee, H.K., Dunwiddie, T., and Hoffer, B., 1980, Electrophysiological interactions of enkephalins with neuronal circuitry in the rat hippocampus. II. effects of interneuronal excitability, Brain Res., 184:331–342.PubMedCrossRefGoogle Scholar
  28. 28.
    Leybin, L., Pinsky, C, LaBella, F.S., Havlicek, V., and Rezek, M., 1976, Intraventricular Met5-enkephalin causes unexpected lowering of pain threshold and narcotic withdrawal signs in rats, Nature (Lond.), 264:458–459.CrossRefGoogle Scholar
  29. 29.
    Martin, B.R., Dewey, W.L., Chau-Pham, T., and Prange, Jr., A.J., 1977, Interactions of thyrotropin releasing hormone and morphine sulfate in rodents, Life Sei., 20:715–722.CrossRefGoogle Scholar
  30. 30.
    Masukawa, L.M., and Prince, D.A., 1982, Enkephalin inhibition of inhibitory input to CA1 and CA3 pyramidal neurons in the hippocampus, Brain Res., 249:271–280.PubMedCrossRefGoogle Scholar
  31. 31.
    Nicoll, R.A., Alger, B.E., and Jahr, C.E., 1980, Enkephalin blocks inhibitory pathways in the vertebrate CNS, Nature (Lond.), 287:22–25.CrossRefGoogle Scholar
  32. 32.
    Oja, S.S., and Kontro, P., 1983, Taurine, in: “Handbook of Neurochemistry”, Vol. 3 (2nd Ed.), A. Lajtha, ed., Plenum Publishing Corporation, New York, pp.501–533.Google Scholar
  33. 33.
    Siggins, G.R., and Zieglgansberger, W., 1981, Morphine and opioid peptides reduce inhibitory synaptic protentials in hippocampal pyramidal cells in vitro without alteration of membrane potential, Proc. Natl. Acad. Sci. USA, 78:5235–5239.PubMedCrossRefGoogle Scholar
  34. 34.
    Snead III, O.C., and Bearden, L.J., 1980, Anticonvulsants specific for peti mal antagonize epileptogenic effect of leucine enkephalin, Science, 210:1031–1033.PubMedCrossRefGoogle Scholar
  35. 35.
    Squillace, K.M., Post, R.M., and Pert, A., 1980, Development of wet-dog shakes during amygdala kindling in the rat, Exp. Neurol., 70:487–497.PubMedCrossRefGoogle Scholar
  36. 36.
    Tortella, F.C., Moreton, J.E., and Khazan, N., 1979, Electroencephalographic and behavioral tolerance to and cross-tolerance between D-Ala2-Methionine-Enkephalinamide and morphine in the rat, J. Pharmacol. Exp. Ther., 210:174–179.PubMedGoogle Scholar
  37. 37.
    Urca, G., Frenk, H., and Liebeskind, J.C., 1977, Morphine and enkephalin: analgesic and epileptic properties, Science, 197:83–86.PubMedCrossRefGoogle Scholar
  38. 38.
    Van Gelder, N.M., 1972, Antagonism by taurine of cobalt-induced epilepsy in cat and mouse, Brain Res., 47:157–165.PubMedCrossRefGoogle Scholar
  39. 39.
    Wei, E., 1975, Resemblance of morphine antinociception to the central depressant actions of norepinephrine, Life Sci., 17:17–18.PubMedCrossRefGoogle Scholar
  40. 40.
    Wei, E., Loh, H.H., and Way, E.L., 1973, Quantitative aspects of precipitated abstinence In morphine-dependent rats, J. Pharmacol. Exp. Ther., 184:398–403.PubMedGoogle Scholar
  41. 41.
    Wei, E., Loh, H.H., and Way, E.L., 1973, Neuroanatomical correlates of wet shake behaviour in the rat, Life Sci., 12:489–496.CrossRefGoogle Scholar
  42. 42.
    Wei, E., Sigel, S., Loh, H.H., and Way, E.L., 1975, Thyrotropin-releasing hormone and shaking behaviour in the rat, Nature (Lond.), 253:739–740.CrossRefGoogle Scholar
  43. 43.
    Wikler, A., Green, P.D., Smith, H.D., and Pescor, F.T., 1960, Use of a benzimidazole derivative with potent morphine-like properties as a presumptive reinforcer in conditioning of drug seeking behavior in rats, Fed. Proc, 19:22.Google Scholar
  44. 44.
    Yamamoto, H., McCain, H.W., Izumi, K., Misawa, S., and Way, E.L., 1981, Effects of amino acids, especially taurine and γ-aminobutyric acid (GABA), on analgesia and calcium depletion induced by morphine in mice, Eur. J. Pharmacol., 71:177–184.PubMedCrossRefGoogle Scholar
  45. 45.
    Zieglgansberger, W., French, E.D., Siggins, G.R., and Bloom, F.E., 1979, Opioid peptides may excite hippocampal pyramidal neurons by inhibiting adjacent inhibitory interneurons, Science, 205:415–417.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Kanji Izumi
    • 1
  • Motoaki Yoshida
    • 2
  • Takeshi Koja
    • 1
  • Eisuke Munekata
    • 3
  • Takao Nakanishi
    • 2
  • Takeo Fukuda
    • 1
  1. 1.Department of Pharmacology, Faculty of MedicineKagoshima UniversityKagoshima 890Japan
  2. 2.Department of Neurology, Institute of Clinical MedicineUniversity of TsukubaIbaraki 305Japan
  3. 3.Institute of Applied BiochemistryUniversity of TsukubaIbaraki 305Japan

Personalised recommendations