Calcium Overload-Induced Myocardial Damage Caused by Isoproterenol and by Adriamycin: Possible Role of Taurine in its Prevention

  • Junichi Azuma
  • Tomoyuki Hamaguchi
  • Hideyuki Ohta
  • Keiko Takihara
  • Nobuhisa Awata
  • Akihiko Sawamura
  • Hisato Harada
  • Yuya Tanaka
  • Susumu Kishimoto
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 217)

Abstract

Calcium ion (Ca2+) is essential for excitation-contraction coupling and for maintenance of cell integrity in the myocardium. On the other hand, it is clear that cytosolic Ca2+ loading may be the first event leading to cell death in certain forms of myocytic injury, such as Ca2+ paradox and isoproterenol (ISO) toxicity. The Ca2+ overload injury is characterized by an exhaustion of tissue high-energy phosphate, massive release of enzymes and extensive ultrastructural damage, as well as excessive influx of Ca2+ into the myocardial cells.

Keywords

Taurine Transport Taurine Content Taurine Treatment Cardiomyopathic Hamster Taurine Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez. J.G., and Storey, B.T., 1983, Taurine, hypotaurine, eplnephrlne and albumin inhibit lipld peroxidation in rabbit spermatozoa and protect against loss of motility, Biol. Reprod., 29:548–555.PubMedCrossRefGoogle Scholar
  2. 2.
    Azari, J., Brumbaugh, P., and Huxtable, R., 1980, Prophylaxis by taurine in the hearts of cardiomyopathic hamsters, J. Mol. Cell. Cardiol., 12:1353–1366.PubMedCrossRefGoogle Scholar
  3. 3.
    Azari, J., and Huxtable, R.J., 1980, The mechanism of the adrenergic stimulation of taurine influx in the heart, Eur. J. Pharmacol., 61:217–223.PubMedCrossRefGoogle Scholar
  4. 4.
    Azuma, J., Sperelakis, N., Hasegawa, H., Tanlmoto, T., Vogel, S., Ogura, K., Awata, N., Sawamura, A., Harada, H., Ishiyama, T., Morita, Y., and Yamamura, Y., 1981, Adriamycin cardiotoxicity: possible pathogenic mechanisms, J. Mol. Cell. Cardiol., 13:381–397.PubMedCrossRefGoogle Scholar
  5. 5.
    Bechur, N.R., Gordon, S.L., and Gee, M.B., 1977, Anthracycline antibiotic augmentation of microsomal electron transport and free radical formation, Mol. Pharmacol., 13:911–917.Google Scholar
  6. 6.
    Bligh, E.G., and Dyer, M.J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 13:911–917.CrossRefGoogle Scholar
  7. 7.
    Bristow, M.R., Kantrowitz, N.E., Harrison, S.D., Minobe, W.A., Sageman, W.S., and Billingham, M.E., 1983, Mediation of subacute anthracycline cardiotoxicity in rabbits by cardiac histamine release, J. Cardiovasc. Pharmacol., 5:913–919.PubMedCrossRefGoogle Scholar
  8. 8.
    Doroshow, J.H., Locker, G.Y., and Myers, C.E., 1980, Enzymatic defenses of the mouse heart against reactive oxygen metabolites, Clin. Invest., 65:128–135.CrossRefGoogle Scholar
  9. 9.
    Fleckenstein, A., Janke, J., Doring, H., and Leder, O., 1974, Myocardial fiber necrosis due to intracellular Ca overload — a new principle in cardiac pathophysiology, in: “Recent Advances in Studies on Cardiac Structure and Metabolism, Myocardial Biology, vol. 4”, N.S. Dhalla, ed., University Park Press, Baltimore, pp. 563–587.Google Scholar
  10. 10.
    Fridovich, I., 1978, The biology of oxygen radicals, Science (Wash., P.C.), 201:875–880.CrossRefGoogle Scholar
  11. 11.
    Hafeman, D.G., Sunde, R.A., and Hoekstra, W.G., 1974, Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat, J. Nutr., 104:580–587.PubMedGoogle Scholar
  12. 12.
    Hissin, P.J., and Hilf, R., 1976, A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem., 74:214–226.PubMedCrossRefGoogle Scholar
  13. 13.
    Huxtable, R.J., 1976, Metabolism and function of taurine in the heart, in; “Taurine”, Raven Press, New York, pp. 99–120.Google Scholar
  14. 14.
    Huxtable, R.J., and Chubb, J., 1977, Adrenergic stimulation of taurine transport by the heart, Science, 198:409–411.PubMedCrossRefGoogle Scholar
  15. 15.
    Huxtable, R.J., and Sebring, L.A., 1983, Cardiovascular actions of taurine, Prog. Clin. Biol. Res., 125: 5–37.PubMedGoogle Scholar
  16. 16.
    Kishi, T., Watanabe, T., and Folkers, K., 1976, Bioenergics in Clinical Medicine: Prevention by forms of conenzyme Q10-enzymes in mltochondira of the myocardium, Proc. Natl. Acad., 73:4653–4656.CrossRefGoogle Scholar
  17. 17.
    Lau, J., Fumagalli, A., Schein, P.S., and Rahman, A., 1985, Selective inhibition of cardiac cyclic nucleotide phosphodiestereases by doxo-rubicin and daunorubicin, Life Sci., 35:589–599.Google Scholar
  18. 18.
    Lowry, O.H., Rosenbrough, H.J., Farr, A.L., and Randall, R.J., 1959, Possible measurement with Folin phenol reagent, J. Biol. Chem., 193: 254–275.Google Scholar
  19. 19.
    McBroom, M.J., and Welty, J.D., Effects of taurine on heart calcium in the cardiomyopathic hamster, J. Mol. Cell. Cardiol., 9:853–858.Google Scholar
  20. 20.
    Minow, R.A., Benjamin, R.S., and Gottlieh, J.A., 1975, Adriamycin (NSC-123127) cardiomyopathy — an overview with determination of risk factors, Cancer Chemother. Rep., Part 3, 6:195–201.Google Scholar
  21. 21.
    Myers, C.E., McGuire, W.P., Liss, H.L., Ifrim, I., Grutzinger, K., and Young, R.C., 1979, Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response, Science, 197:165–167.CrossRefGoogle Scholar
  22. 22.
    Nakashima, T., Takino, T., and Kuriyama, K., 1983, Therapeutic and prophylactic effects of taurine administration on experimental liver injury, Prog. Clin. Biol. Res., 179:449–459.Google Scholar
  23. 23.
    Nayler, W.G., 1981, The role of calcium in the ischemic myocardium, Am. J. Pathol., 102:262–270.PubMedGoogle Scholar
  24. 24.
    Ohta, H., Azuma, J., Ohnishi, S., Awata, N., Takihara, K., and Kishimoto, S., 1986, Protective effect of taurine against isoprenaline-induced myocardial damage, Basic. Res. Cardiol., 81:473–481.PubMedCrossRefGoogle Scholar
  25. 25.
    Reed, J.D., and Beatty, P.W., 1986 Biosynthesis and regulation of glutathione: toxicological implication, Rev. Biochem. Toxicol., 2:213–241.Google Scholar
  26. 26.
    Rona, G., Catecholamine cardiotoxicity, J. Mol. Cell Cardiol., 17:292–306.Google Scholar
  27. 27.
    Rona, G., Chappel, C.L., Balazs, T., and Gaudry, R., 1986 An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat, Arch. Pathol., 67:443–455.Google Scholar
  28. 28.
    Rosalki, S.B., 1967, An improved procedure for serum creatine phospho-kinase determination, J. Lab. Clin. Med., 69:696–705.PubMedGoogle Scholar
  29. 29.
    Rosenoff, S.H., Brooks, E., Bostick, F., and Young, R.C., 1971, Alterations in DNA synthesis in cardiac tissue induced by adriamycin in vivo-relationship to fatal toxicity, Biochem. Pharmacol., 24:1898–1901.CrossRefGoogle Scholar
  30. 30.
    Sawamura, A., Sperelakis, N., Azuma, J., and Kishimoto, S., 1986, Effects of taurine on the electrical and mechanical activities of embryonic chick heart, Can. J. Physiol. Pharmacol., 64:649–655.PubMedCrossRefGoogle Scholar
  31. 31.
    Singal, P.K., Beamish, R.E., and Dhalla, N.S., 1983, Potential oxidative pathways of catecholamines in the formation of lipid peroxides and genesis of heart disease, Adv. Exp. Med. Biol., 161:391–401.PubMedCrossRefGoogle Scholar
  32. 32.
    Singal, P.K., Kapur, N., Dhillon, K.S., Beamish, R.E., and Phalla, N.S., 1982, Role of free radicals in catecholamine-induced cardiomyopathy, Can. J. Physiol. Pharmacol., 60: 1390–1397.PubMedCrossRefGoogle Scholar
  33. 33.
    Spath, J.A., Gee, M.H., and Gwirts, P.A., 1979, Normalization of the measurement of cardiac creatine phosphokinase activity, Cardiology, 64:222–230.PubMedCrossRefGoogle Scholar
  34. 34.
    Takihara, K., Azuma, J., Awata, N., Ohta, H., Sawamura, A., Kishimoto, S., and Sperelakis, N., 1985, Taurine’s possible protective role in age-dependent response to calcium paradox, Life Sci., 37:1705–1710.PubMedCrossRefGoogle Scholar
  35. 35.
    Tanizawa, H., Sazuka, Y., and Takino, Y., 1981, Microdetermination of lipoperoxide in the mouse myocardium by thiobarbituric acid fluorophotometory, Chem. Pharm. Bull., 29:2910–2914.PubMedCrossRefGoogle Scholar
  36. 36.
    Welty, M.C., Welty, J.D., and McBroom, M.J., 1982, Effect of isoproterenol and taurine on heart calcium in normal and cardiomyopathic hamsters, J. Mol. Cell Cardiol., 14:353–357.PubMedCrossRefGoogle Scholar
  37. 37.
    Zimmer, H.G., and Gerlach, E., 1976, Influence of isoproterenol, propranolol, and D600 on the de novo synthesis of adenlne nucleotides in rat hearts, in: “Recent Advances in Studies on Cardiac Structure and Metabolism, Biochemistry and Pharmacology of Myocardial Hypertrophy, Hopoxia, and Infarction, vol 7.”, P. Harris, R.J. Bing, and A. Fleckenstein, eds., University Park Press, Baltimore, pp. 131–136.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Junichi Azuma
    • 1
  • Tomoyuki Hamaguchi
    • 1
  • Hideyuki Ohta
    • 1
  • Keiko Takihara
    • 1
  • Nobuhisa Awata
    • 1
  • Akihiko Sawamura
    • 1
  • Hisato Harada
    • 1
  • Yuya Tanaka
    • 1
  • Susumu Kishimoto
    • 1
  1. 1.The Third Department of Internal MedicineOsaka University Medical School1-1-50 Fukushima, Osaka 533Japan

Personalised recommendations