Taurine Availability and Function in Neurogenetic Retinopathies

  • Charles E. Wright
  • Harris H. Tallan
  • Tena R. Wright
  • Bruce Gillam
  • Gerald E. Gaull
  • John A. Sturman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 217)


Several neurogenetic diseases manifest abnormal retinal electrophysiology and pathology; such changes in both retinal integrity and function resemble those found in the retina of individuals with retinitis pigmentosa. Some of these inherited neurodegenerative disease include: ceroid lipofuscinosis, Bardet-Beidl-Lawrence-Moon syndrome and Refsum disease, (36). The etiologies of the retinal degeneration observed in these neurogenetic diseases and retinitis pigmentosa remain unknown. Preliminary results, however, from this laboratory (68) and published reports from other investigators (16,21) suggest altered transport of the amino acid taurine in several neurodegenerative diseases.


Retinal Pigment Epithelium Free Amino Acid Phytanic Acid Retinal Pigment Epithelial Cell Retinitis Pigmentosa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahtee, L., Boullin, D.J., and Paasonen, M.K., 1974, Transport of taurine by normal human blood platelets, Br. J. Pharmacol. 52: 245–251.PubMedCrossRefGoogle Scholar
  2. 2.
    Airaksinen, E.M., Sihvola, P., Airaksinen, M.M., Sihvola, M., and Tuovinen, E., 1979, Uptake of taurine by platelets in retinitis pigmentosa, Lancet i:474–475.CrossRefGoogle Scholar
  3. 3.
    Airaksinen, E.M., Oja, S.S., Marnela, K.M., and Sihvola, P., 1980, Taurine and other amino acids of platelets and plasma in retinitis pigmentosa, Ann. Clin. Res., 12:52–54.PubMedGoogle Scholar
  4. 4.
    Anderson, D.H., Fisher, S.K., Erickson, P.A., and Tabor, G.A., 1980, Rod and cone disc shedding in the rhesus monkey retina, Exp. Eye Res., 30:559–563.PubMedCrossRefGoogle Scholar
  5. 5.
    Armstrong, D., Connole, E., Feeney, L., and Berman, E.R., 1978, Peroxidase in the neural retina and pigment epithelium, J. Neurochem., 31:761–769.PubMedCrossRefGoogle Scholar
  6. 6.
    Armstrong, D., Santangelo, G., and Connole, E., 1981, The distribution of peroxide regulating enzymes in the canine eye, Cur. Eye Res., 1:225–242.CrossRefGoogle Scholar
  7. 7.
    Arshinoff, S.A., McCulloch, J.C., Macrae, W., Stein, A.N., and Marliss, E.B., 1981, Amino acids in retinitis pigmentosa, Br. J. Ophthalmol., 65:626–630.PubMedCrossRefGoogle Scholar
  8. 8.
    Badwey, J.A., and Karnovsky, M.L., 1980, Active oxygen species and the functions of phagocytic leukocytes, Ann. Rev. Biochem. 49: 695–726.PubMedCrossRefGoogle Scholar
  9. 9.
    Berson, E.L., Hayes, K.C., Rabin, A.R., Schmidt, S.Y., and Watson, G., 1976, Retinal degeneration in cats fed casein: II Supplementation with methionine, cysteine or taurine, Invest. Ophthalmol. 15: 52–58.PubMedGoogle Scholar
  10. 10.
    Berson, E.L., Schmidt, S.Y., and Rabin, A.R., 1976, Plasma amino acids in hereditary retinal disease: Ornithine, lysine and taurine, Br. J. Ophthalmol., 60:142–147.PubMedCrossRefGoogle Scholar
  11. 11.
    Bolscher, B.G.J.M., Plat, H., and Wever, R., 1984, Some properties of human eosinophil peroxidase: A comparison with other peroxidases, Biochim. Biophys. Acta 784:177–186.PubMedCrossRefGoogle Scholar
  12. 12.
    Bonaventure, N., Wioland, N., and Mandel, P., 1974, Antagonists of the putative inhibitory transmitter effects of taurine and GABA in the retina, Brain Res., 80:281–289.PubMedCrossRefGoogle Scholar
  13. 13.
    Boullin, D.J., Airaksinen, E.M., and Paasonen, M.K., 1975, Platelet taurine in Down’s Syndrome, Med. Biol., 53:184–186.PubMedGoogle Scholar
  14. 14.
    Buys, J., Wever, R., and Ruitenberg, E.J., 1984, Myeloperoxidase is more efficient than eosinophil peroxidase in the in vitro killing of newborn larvae of Trichinella spirosis, Immunology 51:601–607.PubMedGoogle Scholar
  15. 15.
    Cohen, A.I., McDaniel, M., and Orr, H.T., 1973, Absolute levels of some free amino acids in normal and biologically fractionated retinas, Invest. Ophthalmol., 12:686–693.PubMedGoogle Scholar
  16. 16.
    Dawson, G., 1982, Approaches to the detection of neuronal ceroid lipofuscinosis in cultured skin fibroblasts, in: “Ceroid-lipofuscinosis (Batten’s Disease)”, D. Armstrong, N. Koppang, J. A. Rider, eds., Elsevier Biomedical Press, pp. 229-240.Google Scholar
  17. 17.
    Dilley, J.V., 1972, The origin of urinary taurine excretion during chronic radiation injury, Radiat. Res., 50:191–196.PubMedCrossRefGoogle Scholar
  18. 18.
    Edwards, R.B., and Szamier, R.B., 1977, Defective phagocytosis of isolated rod outer segments by RCS rat retinal pigment epithelium in culture, Science 197:1001–1003.PubMedCrossRefGoogle Scholar
  19. 19.
    Edwards, R.B., and Bakshian, S., 1980, Phagocytosis of outer segments by cultured rat pigment epithelium. Reduction by cyclic AMP and phosphodiesterase inhibitors, Invest. Ophthalmol. Vis. Sci., 19:1184–1188.PubMedGoogle Scholar
  20. 20.
    Feeney, L., and Berman, E.R., 1976, Oxygen toxicity: Membrane damage by free radicals, Invest. Ophthalmol., 15:789–792.PubMedGoogle Scholar
  21. 21.
    Filla, A., Butterworth, R.F., and Barbeau, A., 1979, Pilot studies on membranes and some transport mechanisms in Friedreich’s ataxia, Can. J. Neurol. Sci., 6:285–289.PubMedGoogle Scholar
  22. 22.
    Fukada, K., Hirai, Y., Yoshida, H., Nakajima, T., and Usu, T., 1982, Free amino acid content of lymphocytes and granulocytes compared, Clin. Chem., 29:1758–1761.Google Scholar
  23. 23.
    Geggel, H.S., Ament, M.E., Heckenlively, J.R., and Kopple, J.D., 1982, Evidence that taurine is an essential amino acid in children receiving total parenteral nutrition, Clin. Res. 30:486A.Google Scholar
  24. 24.
    Geggel, H.S., Ament, M.E., Heckenlively, J.R., Martin, D.A., and Kopple, J.D., 1985, Nutritional requirement for taurine in patients receiving long-term parenteral nutrition, N. Eng. J. Med., 312:142–146.CrossRefGoogle Scholar
  25. 25.
    Grant, Z.N., and Nauss, C.B., 1976, Uptake of taurine by human blood platelets: A possible model for brain, in: “Taurine”, R. Huxtable, A. Barbeau eds., Raven Press, pp. 91-98.Google Scholar
  26. 26.
    Ham, W.T., Jr., Ruffulo, J.J., Jr., Mueller, H.A., Clark, A.M., and Moon, M.E., 1978, Histologic analysis of photochemical lesions produced in rhesus retina by short-wave-length light, Invest. Ophthalmol. Vis. Sci., 17:1029–1035.PubMedGoogle Scholar
  27. 27.
    Hayes, K.C., Carey, R.E., and Schmidt, S.Y., 1975, Retinal degeneration associated with taurine deficiency in the cat, Science 188:949–951.PubMedCrossRefGoogle Scholar
  28. 28.
    Hayes, K.C., Rabin, A.R., and Berson, E.L., 1975, All ultrastructural study of nutritionally induced and reversed retinal degeneration in cats, Am. J. Pathol., 78:505–524.PubMedGoogle Scholar
  29. 29.
    Hayes, K.C., Stephan, Z.F., and Sturman, J.A., 1980, Growth depression in taurine-depleted infant monkeys, J. Nutr., 110:2058–2064.PubMedGoogle Scholar
  30. 30.
    Hussain, A.A., and Voaden, M.J., 1985, Postenucleation survival of taurine uptake by pigment epithelium and chroid of the baboon eye, Exp. Eye Res., 40:643–646.PubMedCrossRefGoogle Scholar
  31. 31.
    Jacobsen, J.G., and Smith, L.N., Jr., 1968, Biochemistry and physiology of taurine and taurine derivaties, Physiol. Rev., 48:424–511.PubMedGoogle Scholar
  32. 32.
    Kennedy, A.J., and Voaden, M.J., 1974, Free amino acids in thephotoreceptor cells of the frog retina, J. Neurochem., 23:1093–1095.PubMedCrossRefGoogle Scholar
  33. 33.
    Klebanoff, S.J., 1967, Myeloperoxidase-halide-hydrogen peroxide antibacterial system, J. Bacteriol., 95:2131–2138.Google Scholar
  34. 34.
    Kuwabara, T., and Gorn, R.A., 1968, Retinal damage by visible light: An electron m;icroscope study, Arch. Ophthalmol., 79:69–78.PubMedCrossRefGoogle Scholar
  35. 35.
    Mandel, P., Pasantes-Morales, H., and Urban, P.F., 1976, Taurine, a putative neurotransmitter in retina, in: “Transmitters in the Visual Process”, S.L. Bonting, ed., Pergamon Press, pp. 89-105.Google Scholar
  36. 36.
    McKusick, V.A., 1983, “Mendelian Inheritance in Man”, Johns Hopkins Univ. Press.Google Scholar
  37. 37.
    Nauss-Karol, C., and VanderWende, C., 1981, High affinity taurine uptake in human blood platelets, in: “The Effects of Taurine on Excitable Tissues”, S.W. Schaffer, S.I. Baskin, J.J. Kocsis, eds., SP Medical and Scientific Books, pp. 81-91.Google Scholar
  38. 38.
    Nishimura, C., Ida, S., and Kuriyama, K., 1983, Biosynthesis of Taurine in Frog Retina-differential Effects of Physiological Light and x-ray Irradiation, in: “Sulfur Amino Acids Biochemical and Clinical Aspects”, K. Kuriyama, R.J. Huxtable, H. Iwata, eds., Alan R. Liss, pp. 233-250.Google Scholar
  39. 39.
    Noell, W.K., Walker, V.S., Kang, B.S., and Berman, S., 1966, Retinal damage by light in rats, Invest. Ophthalmol., 5:450–473.PubMedGoogle Scholar
  40. 40.
    Ogino, N., Matsumura, M., Shirakawa, H., and Tsukahara, I., 1983, Phagocytic activity of cultured retinal pigment epithelial cells from chick embryo, Ophthalmic Res., 15:72–89.PubMedCrossRefGoogle Scholar
  41. 41.
    Orr, H.T., Cohen, A.I., and Lowry, O.H., 1976, The distribution of taurine in the vertebrate retina, J. Neurochem., 26:609–611.PubMedCrossRefGoogle Scholar
  42. 42.
    Pasantes-Morales, H., Klethi, J., Ledig, M., and Mandel, P., 1972, Free amino acids of chicken and rat retina, Brain Res., 41:494–497.PubMedCrossRefGoogle Scholar
  43. 43.
    Pasantes-Morales, H., Urban, P. F., Klethi, J., and Mandel, P., 1973, Light stimulated release of [35S]taurine from chicken retina, Brain Res., 51:375–378.PubMedCrossRefGoogle Scholar
  44. 44.
    Pasantes-Morales, H., Quesada, O., Carabez, A., and Huxtable, R.J., 1983, Effects of the taurine transport antagonists, guanidino-ethane sulfate, and beta-alanine on the morphology of rat retina, J. Neurosci. Res., 9:135–143.PubMedCrossRefGoogle Scholar
  45. 45.
    Perry, T.L., Norman, M.G., Yong, V.W., Whiting, S., Crichton, J. U., Hansen, S., and Kish, S.J., 1985, Hallervorden-Spatz Disease: Cysteine accumulation and cysteine dioxygenase deficiency in the globus pallidus, Ann. Neurol., 18:482–489.PubMedCrossRefGoogle Scholar
  46. 46.
    Schmidt, S.Y., and Berson, E.L., 1980, Postmortem metabolic capacity of photoreceptor cells in human and rat retinas, Invest. Ophthalmol. Vis. Sci., 19:1274–1280.PubMedGoogle Scholar
  47. 47.
    Scully, F.E., Jr, and Bempong, M.A., 1982, Organic N-chl or amines: Chemistry and toxicology, Environ. Health Perspect., 46:111–116.PubMedCrossRefGoogle Scholar
  48. 48.
    Sheikh, K. 1981, Taurine deficiency and retinal defects associated with small intestine bacterial growth, Gastroenterology, 80:1363.Google Scholar
  49. 49.
    Soupart, P., 1962, Free Amino Acids of Blood and Urine in the Human, in: “Amino Acid Pools”, J.T. Holden, ed., Elsevier, pp. 220-262.Google Scholar
  50. 50.
    Sperling, H. G., 1980, Are ophthalmologists exposing their patiens to dangerous light levels?, Invest. Ophthalmol. Vis. Sci., 19:989–990.PubMedGoogle Scholar
  51. 51.
    Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D.S., Goldstein, J.L., and Brown, M.S., eds., 1983, “The Metabolic Basis of Inherited Diseases”, 5th Ed., McGraw-Hill.Google Scholar
  52. 52.
    Sturman, J.A., Wen, G.Y., Wisniewski, H.M., and Neuringer, M.D., 1984, Retinal degeneration in primates raised on synthetic human infant formula, Int. J. Devel. Neurosci., 2:121–130.CrossRefGoogle Scholar
  53. 53.
    Tallan, H.H., Jacobson, E., Wright, C.E., Schneidman, K. and Gaull, G.E., 1983, Taurine uptake by cultured lymphoblastoid cells, Life Sci., 33:1853–1860.PubMedCrossRefGoogle Scholar
  54. 54.
    Tallan, H.H., and Schneidman, K., 1984, Taurine release from cultured human lymphoblastoid cells, Fed. Proc. 43:1779.Google Scholar
  55. 55.
    Thomas, E.L., 1979, Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: Nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli, Infect. Immun. 23:522–532.PubMedGoogle Scholar
  56. 56.
    Thomas, E.L., 1979, Myeloperoxidase-hydrogen peroxide-chloride antimicrobial system: Effect of exogenous amines on antibacterial action against Escherichia coli, Infect. Immun., 25:110–116.PubMedGoogle Scholar
  57. 57.
    Thomas, E.L., Jefferson, M.M., and Grisham, M.B., 1982, Myeloperoxidase-catalyzed incorporation of amines into protein: Role of hypochlorous acid and dichloramines, Biochemstry 21:6299–2308.CrossRefGoogle Scholar
  58. 58.
    Thomas, E.L., Grisham, M.B., and Jefferson, M.M., 1983, Myeloperoxidase-dependent effect of amines on functions of isolated neutrophils, J. Clin. Invest., 72:441–454.PubMedCrossRefGoogle Scholar
  59. 59.
    Uma, S.M., Satapathy, M., and Sitaramayya, A., 1983, Decreased plasma taurine levels in retinitis pigmentosa, Biochem. Med. 30: 49–52.PubMedCrossRefGoogle Scholar
  60. 60.
    Urban, P.F., Dreyfus, H., and Mandel, P., 1976, Influence of various amino acids on the bioelectrical response to light stimulation of a superfused frog retina, Life Sci., 18:473–480.PubMedCrossRefGoogle Scholar
  61. 61.
    Voaden, M.J., 1982, Taurine and Retinitis Pigmentosa, in: “Problems of Normal and Genetically Abnormal Retinas”, R.M. Clayton, J. Haywood, H.W. Reading, A. Wright, eds., Academic Press, pp. 353-362.Google Scholar
  62. 62.
    Voaden, M.J., Hussain, A.A., and Chan, I.P.R., 1982, Studies on retinitis pigmentosa in man: I. Taurine and blood platelets, Br. J. Ophthalmol., 66:771–775.PubMedCrossRefGoogle Scholar
  63. 63.
    Weiss, S.J., Klein, R., Slivka, A., and Wei, M., 1982, Chlorination of taurine by human neutrophils: Evidence for hypochlorous acid generation, J. Clin. Invest., 70:598–607.PubMedCrossRefGoogle Scholar
  64. 64.
    Weiss, S.J., Lampert, M.B., and Test, S.T., 1983, Long-lived oxidants generated by human neutrophils: Characterization and bioactivity, Science 222:625–628.PubMedCrossRefGoogle Scholar
  65. 65.
    Wever, R., Plat, H., and Hamers, M.Y., 1981, Human eosinophil peroxidase: A novel isolation procedure, spectral properties and chlorinating activity, FEBS Lett., 123:327–331.PubMedCrossRefGoogle Scholar
  66. 66.
    Wright, C.E., Lin, T., Lin, Y.Y., and Sturman, J.A., 1984, Taurine reacts with HOCl in cultured cells, Fed. Proc. 43:616.Google Scholar
  67. 67.
    Wright, C.E., Lin, T., Lin, Y.Y., Sturman, J.A., and Gaull, G.E., 1985, Taurine scavenges oxidized chlorine in biological systems, in: “Taurine: Biological Actions and Clinical Perspectives”, S.S. Oja, L. Ahtee, M.K. Paasomem, ed., Alan R Liss, pp. 113-147.Google Scholar
  68. 68.
    Wright, C.E., Tallan, H.H., and Gaull, G.E., 1985, Altered taurine uptake in cultured cell lines derived from patients with retinitis pigraentosa, Invest. Ophthalrool. Vis. Sci. 26:Suppl. 132.Google Scholar
  69. 69.
    Wright, C.E., Tallan, H.H., Lin, Y.Y., and Gaull, G.E., 1986, Taurine: Biological update, Ann. Rev. Biochem., 55:427–453.PubMedCrossRefGoogle Scholar
  70. 70.
    Zgliczynski, J.M., Stelmaszymska, T., Dumanski, J., and Ostrowski, W., 1971, Chloramines as intermediates of oxidation reaction of amino acids by myeloperoxidase, Biochim. Biophys. Acta 235:419–424.PubMedCrossRefGoogle Scholar
  71. 71.
    Zgliczynski, J.M., Selvaraj, R.J., Paul, B.B., Stelmaszynska, T., Poskitt, P.K.F., and Sbarra, A.J., 1977, Chlorination by the myeloperoxidase-H202-Cl antimicrobial system at acid and neutral pH, Proc. Soc. Expt. Biol. Med., 154:418–422.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Charles E. Wright
    • 1
  • Harris H. Tallan
    • 1
  • Tena R. Wright
    • 1
  • Bruce Gillam
    • 1
  • Gerald E. Gaull
    • 1
  • John A. Sturman
    • 1
  1. 1.New York State Institute for Basic Research in Developmental DisabilitiesStaten IslandUSA

Personalised recommendations