Basalt — Seawater Exchange: A Perspective from an Experimental Viewpoint

  • Jose Honnorez
Part of the NATO Conference Series book series (NATOCS, volume 12)


The hydrothermal circulation of seawater through the ocean crust near spreading centers is not only responsible for dissipating about 30% of the heat generated by the emplacement of new crustal material (Sclater et al., 1981), but also for substantial chemical exchanges between the crust and the ocean. It has even been suggested that basalt-seawater interactions “buffer” the composition of the ocean with respect to certain elements. Submarine hot springs appear to discharge into the ocean quantities of manganese, rubidium and lithium equivalent to three, seven, and ten times the river fluxes of these three elements (see Table 1; also G. Thompson, this volume). Hydrothermal inputs in calcium and silica amount to 1/3 and 1/2, respectively, of the river fluxes whereas those in barium and potassium are of about the same order of magnitude as the river fluxes (see Table 1). On the other hand, quantities of magnesium of about the same order of magnitude as the river input seem to be taken up by the altered crust. The actual amounts of most of the various elements remobilized from crustal rocks by hydrothermal circulation are probably higher than those measured in the hot springs debouching on the sea floor because substantial quantities are left behind in the crust when secondary minerals precipitate in the cracks to form veins and cement of breccias. This is particularly true for calcium and silica which form the abundant veins of calcite, quartz, prehnite and various zeolites found in dredged and cored samples.


Fluid Inclusion Oceanic Crust Hydrothermal System Secondary Mineral Hydrothermal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albarede, F., A. Michard, J.F. Minster and G. Michard. 1981. 87Sr/86Sr ratios in hydrothermal waters and deposits from the East Pacific Rise at 21°N. Earth Planet. Sci. Lett. 55: 229–236.CrossRefGoogle Scholar
  2. Alt, J.C., J. Honnorez, H. Hubberten and E. Saltzman. In press. Occurrence and origin of anhydrite from DSDP Leg 70, Hole 504 B, Costa Rica Rift. DSDP Vol.: 69–70.Google Scholar
  3. Anderson, R.N., J. Honnorez, K. Becker, A.C. Adamson, J.C. Alt, R. Emmermann, P.D. Kempton, H. Kinoshita, C. Laverne, M.J. Mottl and R.L. Newmark. 1982. DSDP Hole 504B, the first reference section over 1 km through Layer 2 of the oceanic crust. Nature 300: 589–594.CrossRefGoogle Scholar
  4. Bischoff, J.L. and F.W. Dickson. 1975. Seawater-basalt interaction at 200°C and 500 bars: implications for origin of sea-floor heavy-metal deposits and regulation of sea-water chemistry. Earth Planet. Sci. Lett. 25: 385–397.CrossRefGoogle Scholar
  5. Bischoff, J.L. and W.E. Seyfried. 1978. Hydrothermal chemistry of seawater from 25° to 350°C. Am. Jour. Sci. 278: 838–860.CrossRefGoogle Scholar
  6. Bonatti, E. and O. Joensuu. 1966. Deep-sea iron deposits from the South Pacific. Science 154: 385–402.CrossRefGoogle Scholar
  7. Bonatti, E., B.M. Honnorez-Guerstein and J. Honnorez. 1976. Copper iron sulfide mineralizatons from the equatorial Mid-Atlantic Ridge. Economic Geology 71: 1515–1525.CrossRefGoogle Scholar
  8. Boström, K. 1973. The origin and fate of ferromanganoan active ridge sediments. Acta Univ. Stockholm, Stockholm Contr. Geol. 27: 149–243.Google Scholar
  9. Boström, K. and M.N.A. Peterson. 1966. Precipitates from hydrothermal exhalations on the East Pacific Rise. Econ. Geol. 61: 1258–1265.CrossRefGoogle Scholar
  10. Craig, H., J.A. Welhan, K. Kim, R. Poreda and J.E. Lupton. 1980. Geochemical studies at 21°N EPR hydrothermal fluids, Abscract. EOS 61: 992.Google Scholar
  11. Delaney, J.R., D.W. Mogk and M.J. Mottl. Quartz-cemented, sulfide-bearing greenstone breccias from the Mid-Atlantic Ridge—samples of a high-temperature hydrothermal upflow zone. Subm. to Science.Google Scholar
  12. Edmond, J.M. 1980. The chemistry of the 350° hot springs at 21°N on the East Pacific Rise, Abstract. EOS, 61: 992.Google Scholar
  13. Edmond, J.M., C. Measures, R.E. McDuff, L.J. Chan, R. Collier, B. Grant, L.I. Gordon and J.B. Corliss. 1979. Ridge Crest hydrothermal activity and the balances of the major and minor elements in the ocean: the Galapagos data. Earth Planet. Sci. Lett. 46: 1–18.CrossRefGoogle Scholar
  14. Ellis, A.J. 1967. The chemistry of some explored geothermal systems, pp. 465–514. In: Barnes, H.L., ed., Geochemistry of Hydrothermal Ore Deposits. Holt, Rinehart and Winston, Inc., N.Y.Google Scholar
  15. Ellis, A.J. 1970. Quantitative interpretation of chemical characteristics of hydrothermal systems. Geothermics, Sept. Issue 2: 516–528.CrossRefGoogle Scholar
  16. Hajash, A. 1975. Hydrothermal processes along Mid-Ocean Ridges: an experimental investigation. Contrib. Mineral. Petrol. 53: 205–226.CrossRefGoogle Scholar
  17. Hajash, A. and G.W. Chandler. 1981. An experimental investigation of high-temperature interactions between seawater and rhyolite, andesite, basalt and peridotite. Contr. Mineral. Petrol. 78: 240–254.CrossRefGoogle Scholar
  18. Haymon, R., and M. Kastner., 1981. Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis. Earth Planet. Sci. Lett., 53: 363–381.CrossRefGoogle Scholar
  19. Honnorez-Guerstein, B.M., J. Alt, J. Honnorez and D. Laverne. In press. Zn, Cu, Pb, Fe-sulfide mineralizations in DSDP Hole 504 B: a buried equivalent of the black smokers? DSDP Vol. 83.Google Scholar
  20. Jehl, V. 1975. Le metamorphisme et les fluides associés des roches océaniques de l’Atlantique nord. Ph.D. Thesis, Université de Nancy I, 242 pp.Google Scholar
  21. Le Bel, L. and E. Oudin. 1982. Fluid inclusion studies of deep-sea hydrothermal sulphide deposits on the East Pacific Rise near 21°N. Chem. Geol., 37: 129–136.CrossRefGoogle Scholar
  22. Lyle, M. 1976. Estimation of hydrothermal manganese input to the oceans. Geology, 4: 733–736.CrossRefGoogle Scholar
  23. McDuff, R.E. and J.M. Edmond. 1982. On the fate of sulfate during hydrothermal circulation at mid-ocean ridges. Earth and Planet. Sci. Lett. 57: 117–132.CrossRefGoogle Scholar
  24. Miyashiro, A. 1973. Metamorphism and metamorphic belts, p. 432. John Wiley and Sons, New York.CrossRefGoogle Scholar
  25. Mottl, M.J. 1976. Chemical exchange between seawater and basalt during hydrothermal alteration of the oceanic crust. 107. pp. Ph.D. Thesis, Harvard Univ., Cambridge, Mass.Google Scholar
  26. Mottl, M.J. and H.D. Holland. 1978. Chemical exchange during hydrothermal alteration of basalt by seawater - 1. Geochim. Cosmochim. Acta, 42: 1103–1115.CrossRefGoogle Scholar
  27. Mottl, M.J. and W.E. Seyfried. 1980. Sub-seafloor hydrothermal systems, rock–vs. seawater-dominated. In Rona, P.A. and R.P. Lowell, Eds., Seafloor Spreading Centers: Hydrothermal Systems. Dowden, Hutchinson amp; Ross Inc., Stroudsburg, Pa., 66–82.Google Scholar
  28. Muehlenbachs, K.and R.N. Clayton. 1972. Oxygen isotope studies of fresh and weathered submarine basalts. Can. Jour. Earth Sci., 9: 172–184.CrossRefGoogle Scholar
  29. Ohmoto, H. and R.O. Rye. 1974. Hydrogen and oxygen isotopic compositions of fluid inclusions in the Kuroko deposits, Japan. Econ. Geol., 69: 947–953.CrossRefGoogle Scholar
  30. Oudin, E., C. Fouillac, and L. Le Bel. 1981. Etudes Minéralogique et géochimique des dépôts sulfurés sous-marins actuels de la ride Est-Pacifique (21°N). Campagne Rise. BRGM Publ. No. 25: 241 pp.Google Scholar
  31. Picot, P. and M. Février. 1980. Etude minéralogique d’échantillons du Golfe de Californie (campagne CYAMEX). BRGM Publ. No. 20: 50 pp.Google Scholar
  32. Sclater, J.G., B. Parsons and O. Jaupart. 1981. Oceans and continents: similiarities and differences in the mechanisms of heat loss. Jour. Geophys. Res., 86: 11535–11552.CrossRefGoogle Scholar
  33. Seyfried, W.E. Jr. 1977. Seawater-basalt interaction from 25° - 300°C and 1–500 bars: implications for the origin of submarine metal-bearing hydrothermal solutions and regulation of ocean chemistry. Ph.D. Thesis, Univ. Southerm California, Los Angeles, 216 pp.Google Scholar
  34. Seyfried, W.E. Jr. and M.J. Mottl. 1977. Origin of submarine metal-rich hydrothermal solutions: experimental basalt-seawater interaction in a seawater-dominated system at 300°C, 500 bars, 173–180. In Pacquet, H., and Y. Tardy, eds., Proc. Second Internat. Symp. on Water rock Interaction, Strasbourg, France.Google Scholar
  35. Seyfried, W.E. Jr. and M.J. Mottl. 1982. Hydrothermal alteration of basalt by seawater under seawater-dominated conditions. Geochem. Cosmochem. Acta., 46: 985–1002.CrossRefGoogle Scholar
  36. Seyfried, W. E. Jr., M. J. Mottl and J. L. Bischoff. 1978. Seawater/basalt ratio effects on the chemistry and mineralogy of spilites from the ocean floor. Nature, 275: 211–213.CrossRefGoogle Scholar
  37. Skornyakova I.S., 1964. Dispersed iron and manganese in Pacific Ocean sediments. Int. Geol. Rev., 7 (12): 2161–2174.CrossRefGoogle Scholar
  38. Spooner, E.T.C., H.J. Chapman and J.D. Smewing. 1977. Strontium isotopic contamination and oxidation during ocean floor hydrothermal metamorphism of the ophiolitic rocks of the Troodos massif, Cyprus. Geochem. Cosmochim. Acta, 41: 891–912.CrossRefGoogle Scholar
  39. Stakes, D.S. and J.R. O’Neil. 1982. Mineralogy and stable isotope geochemistry of hydrothermally altered oceanic rocks. Earth and Planet. Sci. Lett. 57: 285–304.CrossRefGoogle Scholar
  40. Styrt, M.M., A.J. Brackmann, H.D. Holland, B.C. Clark, U. PisuthaArnond, C.S. Elridge and H. Ohmoto. 1981. The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the Fast Pacific Rise, 21°N latitude. Earth and Planet. Sci. Lett. 53: 382–390.CrossRefGoogle Scholar
  41. Vidal, P., and N. Clauer. 1981. Pb and Sr isotopic systematics of some basalts and sulfides from the East Pacific Rise at 21°N (project Rita). Earth and Planet. Sci. Lett. 55: 237–246.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Jose Honnorez
    • 1
  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA

Personalised recommendations