The Distribution and Community Structure of Megafauna at the Galapagos Rift Hydrothermal Vents

  • Robert R. Hessler
  • William M. SmitheyJr.
Part of the NATO Conference Series book series (NATOCS, volume 12)


The distributions of the twenty-two megafaunal species at the Galapagos Rift hydrothermal vents vary markedly with respect to the discharging warm water. Vent associated water temperature ranged to 14.72°C, substantially above the 2.01°C ambient temperature of the area. Because it is a conservative property, temperature is a general index of vent-water quality. Some animals (the vestimentiferan, limpets, clam, a shrimp, an anemone, and for the most part, the mussel) are limited to the mouths of vents, where the temperature is several degrees above ambient. Others (serpulid worm, a second anemone, galatheid crab, turid gastropod) are abundant around the vents, but avoid the vent openings and so never experience much more than a degree above ambient. A third group (the siphonophore, brachiopod, a third anemone, enteropneust, a shrimp, ophiuroid) remains at the periphery of the vent field where temperature is at most a few tenths of a degree above ambient. Some mobile species (vent fish, brachyuran crab, galatheid crab, amphi-pods) are most abundant at vent openings but range even into non-vent terrain. Among the taxa that are peripheral or at least avoid vent openings are species which also live in the vast nonvent milieu, but most vent field species are endemic. Conversely, most members of the nonvent environment are absent from vent fields. While vents are obviously a source of abundant nutrition, most deep-sea animals are probably not adapted to the elevated temperature and/or unusual chemistry. Some may be inhibited by interference competition. Those that are totally excluded must be especially sensitive because dilution at the periphery is high.

Chemoautotrophic bacteria form the base of the food chain. The largest portion of metazoan biomass thrives through symbiosis with an incorporated chemoautotrophic bacterial flora; these animals are most closely associated with vent openings. Others feed on suspended bacteria ejected from the vents, those that have settled out, or bacteria growing as a film on the substratum. Vent fields possess a well-developed plankton, but the extent to which they form an intermediate link is not known. Nor do we know the amount of photosynthetically derived plankton and detritus that is contributed via the thermally induced convection cell. The top of the food chain consists of scavengers, mostly malacostracan crustaceans, some of whom combine deposit feeding with carnivory. Oddly, fish are not important at this level.


Hydrothermal Vent Suspension Feeder Versus Versus Versus Versus Versus Brachyuran Crab Caridean Shrimp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballard, R. D., and Grassle, J. F. 1979, Return to oases of the deep (strange world without sun). Natl. Geogr. 156: 680–703.Google Scholar
  2. Balss, H., 1955, Decapoda:Okologie, Bronns, H. G., and Klassen, U., Ordnungen des Tierreichs, Bd. 5, Abt. 1, Buch 7, Lief. 10: 1285–1367.Google Scholar
  3. Boss, K. J., and Turner, R. D., 1980, The giant clam from the Galapagos Rift, Calvntogena magnifica species novum, Malacologie, 20: 161–194.Google Scholar
  4. Cavanaugh, C. M., Gardiner, S. L., Jones, M. L., Jannasch, H. W., and Waterbury, J. B., 1981, Prokaryotic cells in the hydrothermal vent tube worm Riftia DachvDtila Jones: Possible chemoautotrophic symbionts, Science, 209: 340–342.Google Scholar
  5. Cavanaugh, C. M., 1983, Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats, Nature, 302: 58–61.CrossRefGoogle Scholar
  6. Cohen, D. M., and Haedrich, R. L., in press, The fish fauna of the Galapagos thermal vent region, Deep-Sea Res.Google Scholar
  7. Corliss, J. B. and Ballard, R. D. 1977, Oases of life in the cold abyss, Natl. Geogr., 152: 441–454.Google Scholar
  8. Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and van Andel, T. H., 1979, Submarine thermal springs on the Galapagos Rift, Science, 203: 1073–1083.CrossRefGoogle Scholar
  9. Crane, K., and Ballard, R. D., 1980, The Galapagos Rift at 86°W: 4. Structure and morphology of hydrothermal fields and their relationship to the volcanic and tectonic processes of the rift valley, AL. Geonhvs Res., 85 (B3): 1443–1454.CrossRefGoogle Scholar
  10. Edmond, J. M., Measures, C., McDuff, R. E., Chan, L. H., Collier, R., Grant, B., Gordon, L. I., and Corliss, J. B., 1979a, Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean: The Galapagos data, Earth Planet. Sei. Lett., 46: 1–18.Google Scholar
  11. Edmond, J. M., Measures, C., Mangum, B., Grant, B., Sclater, F. R., Collier, R., Hudson, A., Gordon, L. I., and Corliss, J. B., 1979b, On the formation of metal-rich deposits at ridge crests, Earth Plant. Sei. Lett., 46: 19–30.CrossRefGoogle Scholar
  12. Enright, J. T., Newman, W. A., Hessler, R. R., and McGowan, J. A., 1981, Deep-ocean hydrothermal vent communities, Nature, 289: 219–221.CrossRefGoogle Scholar
  13. Fatton, E., Marien, G., Pachiaudi, C., Rio, M., and Roux, M., 1981, Fluctuations de l’aetivite des sources hydrothermalesGoogle Scholar
  14. oceaniques (Pacifique Est, 21°N) enregistrees lors de la croissance des coquilles de Calvntogena maanifica (Lamellibranche, Vesicomyidae) par les isotopes stables du carbone et de l’oxygene, ç. R. Acad. Sei. Paris, 293(serie III):701–706.Google Scholar
  15. Felbeok, H., 1981, Chemoautotrophie potential of the hydrothermal vent tube worm,.iiftia °aehyntila Jones (Vestimentifera), Science, 209: 336–338.CrossRefGoogle Scholar
  16. Felbeck, H., and Somero, G. N., 1982, Primary productivity in deep-sea hydrothermal vent organisms: Roles of sulfide-oxidizing bacteria, Trends Biochem. Sei., 7: 201–204.Google Scholar
  17. Fretter, V., Graham, A., and McLean, J. H, 1981, The anatomy of the Galapagos Rift limpet, Neomnhalus fretterae, Malacoloaia, 21: 337–361.Google Scholar
  18. Grassle, J. F., Berg, C. J., Childress, J J., Grassle, J. P.Google Scholar
  19. Hessler, R. R., Jannasch, H. J., Karl, D. M., Lutz, R. A., Mickel, T. J., Rhoads, D. C., Sanders, H L., Smith, K. L., Somero, G. N., Turner, R. D., Tuttle, J. H., Walsh, P. J., and Williams, A. J., 1979, Galapagos ‘79: Initial findings of a deep-sea biological quest, Oceanus, 22 (2): 1–10.Google Scholar
  20. Grassle, J. F., Sanders, H. L., Hessler, R. R., Rowe, G. T., and McLellan, T., 1975, Pattern and zonation: a study of the bathyal megafauna using the research submersible Alvin, DeenSea Res., 22: 57–481.Google Scholar
  21. Hiatt, B., 1980, Sulfides instead of sunlight, Mosaic, 11(4):15–21. Hessler, R. R., and Wilson, G. D., 1983, The origin and biogeography of malacostracan crustaceans in the deep-sea, ju “Evolution, Time, and Space: The Emergence of the Biosphere,”Google Scholar
  22. R. W. Sims, J. H. Price, and P. E. S. Whalley, eds., Systematics Association Special Vol. 23: 227–254.Google Scholar
  23. Hyman, L. H., 1959 “The Invertebrates V: Smaller Coelomate Groups,” McGraw-Hill, New York.Google Scholar
  24. Jannasch, H. W, and Wirsen, C. 0., 1979, Chemosynthetic primary production at East Pacific sea floor spreading center, BioSci., 29: 592–598.Google Scholar
  25. Jannasch, H. W., and Wirsen, C. 0., 1981, Morphological survey ofGoogle Scholar
  26. microbial mats near deep-sea thermal vents, Avvl. Environ. Microbiol., 41:528–538.Google Scholar
  27. Jones, M. L., 1981, Riftia oachvotila, a new genus, new species: The vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora), Proc. Biol. Soc. Wash., 93:1295–1313.Google Scholar
  28. Karl, D. M., Wirsen, C. 0., and Jannasch, H. W., 1980, Deep-sea primary productivity at the Galapagos hydrothermal vents, Science, 207: 1345–1347.Google Scholar
  29. Killingley, J. S., Berger, W. H., Macdonald, K. C., and Newman, W. A., 1980, 0–18/0–16 variations in deep-sea carbonate shells from the Rise hydrothermal field, Nature, 288: 218–221.Google Scholar
  30. Lonsdale, P.,-1977, Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers, Deev-Sea Res., 24: 857–863.Google Scholar
  31. Lupton, J. E., Klinkhammer, G. P., Normark, W. R., Haymon, R., Macdonald, K. C., Weiss, R. F., and Craig, H., 1980, Helium-3 andGoogle Scholar
  32. manganese at the 21°N East Pacific Rise hydrothermal site, Earth Planet Sei. Lett., 50:115–127.Google Scholar
  33. McLean, J. H., 1981, The Galapagos Rift limpet Neomohalus: Relevance to understanding the evolution of a major Paleozoic-Mesozoic radiation, Malacologia, 21: 291–336.Google Scholar
  34. Mickel, T. J., and Childress, J. J., 1982a, Effects of temperature, pressure and oxygen concentration on the oxygen consumptionGoogle Scholar
  35. rate of the hydrothermal vent crab Bathvograea thermvdron (Brachyura), Physiol Zool., 55:199–207.Google Scholar
  36. Mickel, T. J., and Childress, J. J., 1982b, Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent crab Bathyograea thermvdron (Brachyura), Biol. Bull., 162: 7082.Google Scholar
  37. Pugh, P. R., in press. Benthic siphonophores: A review of the family Rhodaliida, Phil. Trans Roy. Soc. London.Google Scholar
  38. Rau, G. H., 1981a, Hydrothermal vent clam and tube worm C-13/C-12: Further evidence of non-photosynthetic food sources, Science, 209: 338–340.CrossRefGoogle Scholar
  39. Rau, G. H., 1981b, Low N-15/N-14 in hydrothermal vent animals: Ecological implications, Nature, 289: 484–485.CrossRefGoogle Scholar
  40. Rau, G. H., and Hedges, J. I., 1979, Carbon-13 depletion in a hydrothermal vent mussel: Suggestion of a chemosynthetic food source, Science, 203: 648–649.CrossRefGoogle Scholar
  41. Smithey, W. M., Jr., and Hessler, R. R., in press, Megafaunal distribution at deep-sea hydrothermal vents: An integrated photographic approach, j: “Underwater Photography for Scientists,” Oxford University Press, London.Google Scholar
  42. Spiess, F. N., Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., Macdougall, J. D., Miller, S., Normark, W., Orcutt, J., and Ran-gin, C., 1980, East Pacific Rise: Hot springs and geophysical experiments, Science, 207: 1421–1433.CrossRefGoogle Scholar
  43. van Andel, and Ballard, R. 0., 1979, The Galapagos Rift at 86°W: 2. Volcanism, structure, and evolution of the rift valley,,L. Geophys Bgg., 84: 5390–5406.Google Scholar
  44. Williams, A. B., 1980, A new crab family from the vicinity of submarine thermal vents on the Galapagos Rift (Crustacea: Decapoda: Brachyura), Proc. Biol. Soc. Wash., 93: 443–472.Google Scholar
  45. Williams, A. B, and Chace, F. A., Jr., 1982, A new caridean shrimp of the family Bresiliidae from thermal vents of the Galapagos Rift,,j,. grunt. au., 2: 136–147.Google Scholar
  46. Zarenkov, N. A., 1969, Decapoda, in “Biology of the Pacific Ocean, Part II, The Deep-Sea Bottom Fauna,” L. A. Zenkevich, ed., Vol. 7:79–82, U.S. Naval Oceanogr. Office, Washington, D. C. (translation).Google Scholar
  47. Zezina, O. N., 1965, Distribution of the deepwater brachiopod Pelagodiscus atlanticus (King), Oceanology, 5: 127–131.Google Scholar
  48. Zezina, O. N., 1969, Brachiopoda, ii “Biology of the Pacific Ocean, Part II,” The Deep-Sea Bottom Fauna,“ L. A. Zenkevich, ed., Vol. 7:100–102, U.S. Naval Oceanogr. Office, Washington, D. C. (translation).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Robert R. Hessler
    • 1
  • William M. SmitheyJr.
    • 1
  1. 1.Scripps Institution of OceanographyLa JollaUSA

Personalised recommendations