Skip to main content

A Geophysical Comparison between Fast and Slow Spreading Centers: Constraints on Magma Chamber Formation and Hydrothermal Activity

  • Chapter
Hydrothermal Processes at Seafloor Spreading Centers

Part of the book series: NATO Conference Series ((MARS,volume 12))

Abstract

While there are many similarities in the geologic structure of various spreading centers, there are some important differences which appear to be related to spreading rate. Taking recent studies of the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge, I have compiled a list of properties (summarized in Table 1) which distinguish the two spreading centers. These studies include seismic reflection and refraction, microearthquake studies, gravity and magnetic measurements, electromagnetic sounding, thermal models, observations of hydrothermal activity and geomorphic/tectonic studies. For each of the contrasting properties listed in Table 1, I briefly explain in the text the origin of the observation and emphasize possible limitations and areas of disagreement in the associated interpretation. Many of the important contrasts between fast and slow spreading centers are related to the increased thermal budget at fast spreading rates which allows for the maintenance of a steady state chamber along most of the length of the rise. At slow spreading rates, the axial magma chamber may persist at distances greater than 15–20 km from transform fault intersections, but given the finite width and spacing of transform faults on slow spreading centers, the axial magma chamber may be transient along most of the ridge’s length. The mechanics and deformation of the lithosphere are also affected by the thermal budget as manifested by along strike topographic continuity, transform fault spacing and style of deformation along spreading center offsets. High temperature vents (350°C) are common at intermediate to fast spreading rates, but may be rare occurrences at slow speading rates (with the possible exception of the Reykjanes ridge and other hot-spot influenced ridges). At most slow-spreading ridges, the frequency and duration of such hydrothermal events may not be adequate to sustain the chemosynthetic benthic faunal communities which thrive on faster spreading centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. N., Langseth, M. G., and Sclater, J. G., 1977, The mechanisms of heat transfer through the floor of the Indian Ocean, J. Geophys. Res., 82: 3391–3409.

    Article  Google Scholar 

  • Atwater, T. M., 1979, Constraints from the Famous area concerning the structure of the oceanic section. Deep drilling results in the Atlantic Ocean: Ocean crust. Eds. M. Talwani, C. G. Harrison, and D. E. Hayes, 2: 33–42.

    Google Scholar 

  • Atwater, T. M., and Mudie, J. D., 1973, Detailed near-bottom geophysical study of the Gorda Rise, J. Geophys, Res., 78: 8665–8686.

    Article  Google Scholar 

  • Ballard, R. D., Francheteau, J., Juteau, T., Rangan, C. and Normark, W., 1981, East Pacific Rise at 21°N: The volcanic, tectonic and hydrothermal processes of the central axis, Earth. Planet. Sci. Lett., 55: 1–10.

    Article  Google Scholar 

  • Becker, K., and Von Herzen, R. P., 1982, Heat transfer through the sediments of the mounds hydrothermal area, Galapagos Spreading Center at 86 W, EOS, 63: 529–536.

    Google Scholar 

  • Becker, K., Von Herzen, R. P., Francis, R. J. G., Anderson, R. N., Honnorez, J., Adamson, A. C., Alt, J. C., Emmerman, R., Kempton, P. D., Kinoshita, H., Laverne, C., Mohl, M. J., and Newmark, R. L., In situ electrical resistivity and bulk porosity of the ocean crust; Costa Rica Rift, Nature, in press, 1982.

    Google Scholar 

  • Bibee, L. D., 1979, Crustal structure in areas of active crustal accretion, Ph. D. Thesis, University of California, San Diego, pp. 155.

    Google Scholar 

  • Blakely, R. J., and Lynn, W. S., 1977, Reversal transition widths and fast spreading centers, Earth Planet. Sci. Lett., 33: 321–330.

    Article  Google Scholar 

  • Bryan, W. B., and Moore, J. G., 1977, Compositional variations of young basalts in the Mid-Atlantic Ridge rift valley near lat. 36°49’N, Geol. Soc. Amer. Bull., 88: 556–570.

    Article  CAS  Google Scholar 

  • Bryan, W. B., G. Thompson, and P. J. Michael, 1979, Compositional variation in a steady-state zoned magma chamber: Mid-Atlantic Ridge at 36°50 N, Tectonophysics, 55: 63–85.

    Article  CAS  Google Scholar 

  • Cande, S. C., and Kent, D. V., 1976, Constraints imposed by the shape of marine magnetic anomalies on the magnetic source, J. Geophys. Res., 81: 4157–4162.

    Article  Google Scholar 

  • Cochran, J. R., 1979, An analysis of isostacy in the world’s oceans, part 2, mid ocean ridge crests, J. Geophys. Res., 84: 4713–4729.

    Article  Google Scholar 

  • Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and Van Andel, Tj. H., 1979, Submarine thermal springs on the Galapagos Rift, Science 203: 1073–1083.

    CAS  Google Scholar 

  • Converse, D. R., Holland, H. D., and Edmond, J. M., 1982, Hydrothermal flow rates at 21°N, EOS, 63: 472.

    Google Scholar 

  • CYAMEX Team, 1980, First manned submersible dives on the East Pacific Rise at 21°N (Project RITA): General Results, Mar. Geophys. Res., 4: 345–379.

    Article  Google Scholar 

  • Dewey, J. F., Kidd, W. S. F., 1977, Geometry of plate accretion, Geol. Soc. Amer. Bull., 88: 960–968.

    Article  Google Scholar 

  • Edmond, J. M., 1980, The chemistry of the 350°C hot springs at 21°N on the East Pacific Rise, EOS 61: 992.

    Article  Google Scholar 

  • Elder, J. W., 1965, Physical processes in geothermal areas. In: Terrestrial Heat Flow Am. Geophys. Union Monogr., 8: 211–239.

    Google Scholar 

  • Fehn, U., Siegel, M. D., Robinson, G. R., Holland, H. D., Williams, D. L., Erickson, A. J., Green, K. E., 1977, Deep-water temperatures in the Famous area, Geol. Soc. Amer. Bull. 88: 488–494.

    Article  Google Scholar 

  • Finkel, R. C., MacDougall, J. D., Chung, Y. C., 1980 Sulfide precipitates at 21°N on the East Pacific Rise: ‘26Ra, 210Pb and 210Po, Geophys. Res. Lett., 7: 685–688.

    Article  CAS  Google Scholar 

  • Fowler, C. M. R., 1976, Crustal structure of the Mid-Atlantic Ridge crest at 37°N, Geophys. J. Roy. Astr. Sop., 47: 459–491.

    Article  Google Scholar 

  • Fox, P. J., and Stroup, J. B., 1981, The plutonic foundation of the oceanic crust, The Sea, 7: 119–218.

    Google Scholar 

  • Francheteau, J., and Ballard, R. D., 1982, The East Pacific Rise near 21°N, 13°N and 20°S: Inferences for along-strike variability of axial processes at the Mid-Ocean Ridge, Earth Planet Sci. Lett., in press.

    Google Scholar 

  • Francis, T. J. G., and Porter, I. T., 1973, Median valley seismology: The Mid-Atlantic Ridge near 45°N, Geophys. J. Roy. Astr. Soc., 34: 279–311.

    Article  Google Scholar 

  • Francis, T. J. G., Porter, I. T., and McGrath, J. R., 1977, Ocean bottom seismograph observations on the Mid-Atlantic Ridge near 37°N, Geol. Soc. Am. Bull., 88: 664–677.

    Article  Google Scholar 

  • Green, K. E., 1980, Geothermal processes at the Galapagos Spreading Center, Ph.D. Dissertation, WHOI-80–33.

    Google Scholar 

  • Green, K. E., Von Herzen, R. P., Williams, D. L., 1981, The Galapagos Spreading Center at 86°W: A detailed geothermal field study, J. Geopys. Res., 86: 979–986.

    Article  Google Scholar 

  • Hale, L. D., Morton, C. J., and Sleep, N. H., 1982, Reinterpretation of seismic reflection data over the East Pacific Rise, J. Geophys. Res., 87: 7707–7719.

    Article  Google Scholar 

  • Hall, J. M., 1976, Major problems regarding the magnetization of oceanic crustal layer 2, J. Geooys. Res., 81: 4223–4230.

    Google Scholar 

  • Harrison, C. G. A., 1968, Formation of magnetic anomaly patterns by dyke injection, J. Geophys. Res., 73: 2137–2142.

    Article  Google Scholar 

  • Harrison, C. G. A., 1981, Magnetism of the oceanic crust, The Sea, 7: 219–237.

    Google Scholar 

  • Haymon, R., and Kastner, M., 1981, Hot spring deposits on the East Pacific Rise at 21°N: preliminary description of mineralogy and genesis, Earth Planet. Sci. Lett., 53: 363–381.

    Article  CAS  Google Scholar 

  • Herron, T. J., Stoffa, P. L., and Buhl, P., 1980, Magma chamber and mantle reflections–East Pacific Rise, Geophys. Res. Lett., 7: 989–992.

    Article  Google Scholar 

  • Hey, R., Duennebier, F. K., and Morgan, W. J., 1980, Propagating rifts on mid-ocean ridges, J. Geophys. Res., 85: 3647–3658.

    Article  Google Scholar 

  • Johnson, H. P., Karsten, J. L., Delaney, J. R., Davis, E. E., Currie, R. G., and Chase, R. L., A detailed study of the Cobb offset of the Juan de Fuca Ridge: Evolution of a propagating rift, J. Geophys. Res., in press.

    Google Scholar 

  • Jung, H., and Lewis, B. T. R., 1982, Seismic refraction results from the southern Juan de Fuca Ridge, EOS, 63: 1153.

    Google Scholar 

  • Keen, C. E., and Tramontini, C., 1970, A seismic refraction survey on the Mid-Atlantic Ridge, Geophys. J. Roy. Astr. Soc., 20: 473–491.

    Article  Google Scholar 

  • Kidd, R. G. W., 1977, A model for the process of formation of upper oceanic crust, Geophvs. J. Roy. Astr. Soc., 50: 149–183.

    Article  Google Scholar 

  • Killingley, J. S., Berger, W. H., Macdonald, K. C., and Newman, W. A., 1980, 180/160 variations in deep sea carbonate shells from the RISE hydrothermal field, Nature, 288: 218, 221.

    Google Scholar 

  • Klitgord, K. D., Huestis, S. P., Parker, R. L., and Mudie, J. D., 1975, An analysis of near-bottom magnetic anomalies: Sea floor spreading, the magnetized layer, and the geomagnetic time scale, Geophys. J. Roy. Astr. Soc., 43: 387–424.

    Article  Google Scholar 

  • Lachenbruch, A. H., 1973, A simple mechanical model for oceanic spreading centers, J. Geophys. Res., 78: 3395–3417.

    Article  Google Scholar 

  • Lewis, B. T. R., 1982, Constraints on the structure of the East Pacific Rise from gravity, J. Geophys. Res., 87: 8491–8500.

    Article  Google Scholar 

  • Lilwall, R. C., Francis, T. J. G., and Porter, I. T., 1978, Ocean bottom seismograph observations on the Mid-Atlantic Ridge near 45°N–further results, Geophys. J. Roy. Astr. Soc., 55: 255–262.

    Article  Google Scholar 

  • Lister, C. R. B., 1972, On the thermal balance of a mid-ocean ridge, Geophys. J. Roy. Astr. Soc., 26: 515–535.

    Article  Google Scholar 

  • Lister, C. R. B., 1977, Qualitative models of spreading center processes, including hydrothermal penetration, Tectonophysics, 37: 203–218.

    Google Scholar 

  • Lister, C. R. B., 1982, On the intermittency of seafloor spreading, EOS, 63: 1153.

    Google Scholar 

  • Lonsdale, P., 1977 Structural geomorphology of a fast-spreading rise crest: The East Pacific Rise near 3°25’S, Mar. Geophys..., 3:251–293.

    Google Scholar 

  • Lonsdale, P., 1982, Small offsets of the Pacific-Nazca and Pacific-Cocos spreading axes, EOS, 63: 1108.

    Google Scholar 

  • Macdonald, K. C., 1977, Near-bottom magnetic anomalies, asymmetric spreading, oblique spreading and tectonics of the Mid-Atlantic Ridge near 37°N, Geol. Soc. Am. Bull., 88: 541–555.

    Article  Google Scholar 

  • Macdonald, K. C., 1982, Mid-ocean ridges: Fine-scale tectonic, volcanic and hydrothermal processes within the plate boundary zone, Ann. Rev. Earth Planet. Sci., 10: 155–190.

    Article  Google Scholar 

  • Macdonald, K. C., Miller, S. P., Huestis, S. P., and Spiess, F. N., 1980a, Three-dimensional modeling of a magnetic reversal boundary from inversion of deep-tow measurements, J. Geophys. Res., 85: 3670–3680.

    Article  Google Scholar 

  • Macdonald, K. C., Becker, F., Spiess, F. N., and Ballard, R. D., 1980b, Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise, Earth Planet, Sci. Lett. j$: 1–7.

    Google Scholar 

  • Macdonald, Ken C., and Fox, P. J., 1983, Overlapping spreading centers: new accretion geometry on the East Pacific Rise, Nature, 302: 55–58.

    Article  Google Scholar 

  • Macdonald, K. C., Kastens, K., Spiess, F. N., and Miller, S. P., 1979, Deep tow studies in the Tamayo Transform Fault, Marine Geophys. Res., 4: 37–70.

    Article  Google Scholar 

  • Macdonald, K. C., and Luyendyk, B. P., 1977, Deep-tow studies of the structure of the Mid-Atlantic Ridge crest near lat. 37°N, Geol. Soc. Amer. Bull., 88, 621–636, 1977.

    Google Scholar 

  • Macdonald, K. C., Luyendyk, B. P., Mudie, J. D., and Spiess, F. N., 1975, Near-bottom geophysical study of the Mid-Atlantic Ridge median valley near lat. 37°N: Preliminary observations, Geology, 3: 211–215.

    Article  Google Scholar 

  • Macdonald, K. C., Miller, S. P., Luyendyk, B. P., Atwater, T. M., and Shure, L., Investigation of an Vine-Matthews magnetic lineation from a submersible: The source and character of marine magnetic anomalies, J. Geophys. Res., in press.

    Google Scholar 

  • Macdonald, K. C., and Mudie, J. D., 1974, Microearthquakes on the Galapagos Spreading Center and the seismicity of fast-spreading ridges, Geophys. J. R. Astr. Soc,, 36: 245–257.

    Article  Google Scholar 

  • Malahoff, A., 1982, Massive enriched polymetallic sulfides of the ocean floor - a new commercial source of strategic minerals? OTC 4293.

    Google Scholar 

  • Matthews, D. H., and Bath, J. 1967. Formation of magnetic anomaly patterns on the Mid-Atlantic Ridge, Geophys. J. Roy. Astr. soc., 13: 349–357.

    Article  Google Scholar 

  • Mammerickx, J., and Smith, S. M., 1978, Bathymetry of the Southeast Pacific, Geol. Soc. Amer., Map and Chart Series MC-26.

    Google Scholar 

  • McClain, J. S., and Lewis, B. T. R., 1980, A seismic experiment of the axis of the East Pacific Rise, Marine Geol., 35: 147–169.

    Article  Google Scholar 

  • Menard, H. W., 1967, Seafloor spreading, topography and second layer, Science, 157: 923–924.

    Article  CAS  Google Scholar 

  • Morton, J. L., Tompkins, D. H., Normark, W. R., and Sleep, N. H., 1982, Structure of the southern Juan de Fuca ridge from multi-channel seismic reflection records, EOS, 63: 1153.

    Google Scholar 

  • Nisbet, E. G., ad Fowler, C. M. R., 1978, The Mid-Atlantic Ridge at 37°and 45°N, some geophysical and petrologic constraints, Geophys. J. Roy. Astr. Soc., 54: 631–660.

    Article  Google Scholar 

  • Normark, W. R., Morton, J. L., and Delaney, J. R., 1982, Geologic setting of massive sulfide deposits and hydrothermal vents along the southern Juan de Fuca Ridge, USGS, open-file report 82–200A.

    Google Scholar 

  • Orcutt, J. A., Kennett, B. L. N., and Dorman, L. M., 1976, Structure of the East Pacific Rise from an ocean bottom seismometer array, Geophys. J. Roy. Astr. Soc., 45: 305–320.

    Article  Google Scholar 

  • Orcutt, J. A., McClain, J. S., Burnett, M., Seismic constraints on the generation, evolution and structure of the ocean crust, Geol. Soc. of London Spec. Pub., in press.

    Google Scholar 

  • Pallister, J. S., and Hopson, C. A., 1981, Semail ophiolite plutonic suite: Field relations, phase variations, cryptic variation and layering, and a model of a spreading ridge magma chamber, J. Geopys. Res., 79: 1587–1593.

    Google Scholar 

  • Parker, R. L., and Huestis, S. P., 1974, The inversion of magnetic anomalies in the presence of topography, J. Geonys. Res., 79: 1587–1593.

    Article  Google Scholar 

  • Parker, R. L., and Oldenburg, D. W., 1973, Thermal model of ocean ridges, Nature Phys. Sei., 242: 137–139.

    Article  Google Scholar 

  • Poehls, K., 1974, Seismic refraction on the Mid-Atlantic Ridge at 37°N, J. Geophys. Res., 79: 3370–3373.

    Article  Google Scholar 

  • Prothero, W., and Reid, I., 1982, Microearthquake results from the East Pacific Rise, J. Geon ys. Res., 87: 8509–8518.

    Article  Google Scholar 

  • Purdy, G. M., Detrick, R. S., and Cormier, M., 1982, Seismic constraints on the crustal structure at a ridge-fracture zone intersection, EOS, 63: 1100.

    Google Scholar 

  • Ramberg, I. B., Gray, D. F., and Raynolds, R. G. H., 1977, Tectonic evolution of the FAMOUS area of the Mid-Atlantic Ridge, lat. 35 50’ to 37 20’N, Geol. Soc. Amer. Bull., 88: 609–620.

    Article  Google Scholar 

  • Riedesel, M., Orcutt, J. A., Macdonald, K. C., and McClain, J. S., 1982, Microearthquakes in the Black Smoker Hydrothermal Field, East Pacific Rise at 21 ° N, 87: 10613–10624.

    Google Scholar 

  • Reid, I. D., and Macdonald, K. C., 1973, Microearthquake study of the Mid-Atlantic Ridge near 37°N using sonobuoys, Nature, 246: 88–90.

    Article  Google Scholar 

  • Reid, I. D., Orcutt, J. A., and Prothero, W. A., 1977, Seismic evidence for a narrow zone of partial melting underlying the East Pacific Rise at.2T°N, Geol. Soc. Amer. Bull., 88: 678–682.

    Article  Google Scholar 

  • RISE Team: Spiess, F. N., Macdonald, K. C., Atwater, T., Ballard, R., Carranza, A., Cordoba, D., Cox, C., Diaz Garcia, V. M., Francheteau, J., Guerrero, J., Hawkins, J., Haymon, R., Hessler, R., Juteau, T., Kastner, M., Larson, R., Luyendyk, B., MacDougall, J. D., Miller, S., Normark, W., Orcutt, J., and Rangin, C., 1980, East Pacific Rise: Hot springs and geophysical experiments, Science, 207: 1421–1433.

    Google Scholar 

  • Rona, P. A., 1980, TAG hydrothermal field: Mid-Atlantic Ridge Crest at latitude 26°N, J. Geol. Soc. London, 137: 385–402.

    Article  CAS  Google Scholar 

  • Rona, P. A., Bostrom, K., and Epstein, S., 1980, Hydrothermal quartz vug from the Mid-Atlantic Ridge, Geology, 8: 569–572.

    Article  CAS  Google Scholar 

  • Rosendahl, B. R., Raitt, R. W., Dorman, L. M., Bibee, L. D., Hussong, D. M., and Sutton, G. H., 1976, Evolution of oceanic crust, 1. A physical model of the East Pacific Rise crest derived from seismic refraction data, J. Geophys. Res., 81: 5294–5305.

    Article  Google Scholar 

  • Schouten, H., and Klitgord, K. D., 1982, The memory of the accreting plate boundary and the continuity of fracture zones,. Earth Planet Sci. Lett., 59: 255–266.

    Article  Google Scholar 

  • Schouten, H., Denham, C., and Smith, W., 1982, On the quality of marine magnetic anomaly sources and sea-floor topography, Geophys. J. Roy. Astr. Soc., 70: 245–260.

    Article  Google Scholar 

  • Sclater, J. G., and Francheteau, J., 1970, The implications of terrestrial heat flow observations on current tectonic and geochemical models of the crust and upper mantle of the Earth, Geophys. J. Roy. Astr. Soc., 20: 509–542.

    Google Scholar 

  • Simoneit, B. R. T., and Lonsdale, P. F., 1982, Hydrothermal petroleum on mineralized mounds at the seabed of Guaymas Basin, Nature, 295: 198–202.

    Article  CAS  Google Scholar 

  • Sleep, N. H., 1969, Sensitivity of heat flow and gravity to the mechanism of seafloor spreading, J. Geophys. Res., 74: 542–549.

    Google Scholar 

  • Sleep, N. H., 1975, Formation of ocean crust: Some thermal constraints, J. Geophys. Res., 80: 4037–4042.

    Article  Google Scholar 

  • Sleep, N. H., Hydrothermal convection at ridge axes, P. Rona et al., eds., Hydrothermal Processes at Spreading. Centers, Plenum, in press.

    Google Scholar 

  • Sleep, N. H., and Biehler, S., 1970, Topography and tectonics at the intersections of fracture zones with central rifts, J. Geophys. Res., 75: 2748–2752.

    Article  Google Scholar 

  • Sleep, N. H., Morton, J. L., Burns, L. E., Geophysical constraints on the volume of hydrothermal flow at ridge axes, P. Rona et al., eds., Hydrothermal Processes at Spreading Centers, Plenum, in press.

    Google Scholar 

  • Sleep, N. H., and Rosendahl, B. R., 1979, Topography and tectonics of mid-ocean ridge axes, J. Geophys. Res., 70: 341–352.

    Google Scholar 

  • Stakes, D., Shervais, J. W., and Hopson, C. A., The volcano-tectonic cycle of the FAMOUS and AMR valleys, Mid-Atlantic Ridge (36°47’N): Evidence from basalt glass and basalt phenocryst compositional variations for a steady-state magma chamber beneath the valley midsections, J. Geophys. Res., in press.

    Google Scholar 

  • Talwani, M., Le Pichon, X., and Ewing, M., 1965, Crustal structure of the mid-ocean ridges, J. Geophys. Res., 70: 341–352.

    Article  Google Scholar 

  • Tapponnier, P., and Francheteau, J., 1978, Necking of the lithosphere and the mechanics of slowly accreting plate boundaries, J. Geophys. Res., 83: 3955–3970.

    Article  Google Scholar 

  • Toomey, D. R., Murray, M. H., Purdy, G. M., Murray, M. H., 1982, Microearthquakes on the Mid-Atlantic Ridge near 23°N: new observations with a large network, EOS, 63: 1103.

    Google Scholar 

  • Trehu, A. M., and Solomon, S. C., 1981, Microearthquakes in the Orozco Fracture Zone: a closer look at the results from project ROSE, Trans. Amer. Geophys. Un., 62: 325.

    Google Scholar 

  • Turekian, K. K., and Cochran, J. K., Growth rate determination of a visicomyid clam from the Galapagos Spreading Center hydrothermal field using natural radionuclides, Earth Planet, Sci. Lett., in press.

    Google Scholar 

  • Van Andel, T. H., and Ballard, R. D., 1979, The Galapagos Rift at 86°W, 2, volcanism, structure and evolution of the rift valley, J. Geophys. Res., 84: 5390–5406.

    Article  Google Scholar 

  • Watts, A. B., 1982, Gravity anamolies over oceanic rifts,,a: “Continental and Oceanic Rifts,” G. Palmason, ed., Geodynamics Series 8, American Geophysical Union, 309 pp.

    Google Scholar 

  • Whitmarsh, R. B., 1975, Axial intrusion zone beneath the median valley of the Mid-Atlantic Ridge at 37°N detected by explosion seismology, Geophys. J. Roy. Astr. Soc. 42: 189–215.

    Google Scholar 

  • Williams, D., and Von Herzen, R. P., 1974, Heat loss from the earth: new estimate, Geology 2: 327–328.

    Article  Google Scholar 

  • Williams, D. L., Von Herzen, R. P., Sclater, J. G., and Anderson, R. H., 1974, The Galapagos Spreading Center: lithospheric cooling and hydrothermal circulation, Geoohys. J. Roy. Astr. Soc. 38: 587–608.

    Article  Google Scholar 

  • Woodside, J. M., 1972, The Mid-Atlantic Ridge near 45°N, the gravity field, Can. J. Earth Sci. 9: 942–959.

    Article  Google Scholar 

  • Young, P. D., and Cox, C. S., 1981, Electromagnetic active source sounding near the East Pacific Rise, Geophys. Res. Lett. 8: 1043–1046.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Macdonald, K.C. (1983). A Geophysical Comparison between Fast and Slow Spreading Centers: Constraints on Magma Chamber Formation and Hydrothermal Activity. In: Rona, P.A., Boström, K., Laubier, L., Smith, K.L. (eds) Hydrothermal Processes at Seafloor Spreading Centers. NATO Conference Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0402-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0402-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0404-1

  • Online ISBN: 978-1-4899-0402-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics