Advertisement

Primary Consumers from Hydrothermal Vents Animal Communities

  • D. Desbruyeres
  • L. Laubier
Chapter
Part of the NATO Conference Series book series (NATOCS, volume 12)

Abstract

This paper reviews the present knowledge on the primary consumers from the hydrothermal vent community discovered in three different sites of the eastern Pacific (namely Galapagos ridge, East Pacific Rise at 21° N and 13° N). They display uniform ecological structure and zoological composition. Four major species of primary consumers dominate in term of biomass: the giant tube worm Riftia pachyptila, the large white clam Calyptogena magnifica, an undescribed mytilid musel and the Pompeii worm Alvinella pompejana. These species as well as some others primary consumers of minor importance are strictly linked with active hydrothermal vents, as shown by their spatial microdistribution surrounding the vents. In a way, the primary consumers of the hydrothermal community can be considered as having an r-type ecological strategy ? Large dispersal capabilities have been deduced in the case of the Galapagos mussel from the morphology of its larval shell. Actively swimming stages could also provide dispersal capability to the Pompeii worm.

Growth rates of bivalves have been studied using natural radionuclide shell content and direct growth measurement. Both methods show very high growth rates, from 1 to 4 centimeters per year as an average.

The luxuriance of the primary consumers from the hydrothermal community, as originally proposed in a preliminary hypothesis, comes from their ability to utilize the food source produced by chemosynthetic bacteria. Several approaches have been used including enzymological assays, histological investigations and radiogeochemical methods. At present, the most elaborate situation is probably the case of Riftia pachyptila, which possesses a special organ containing symbiotic chemoautotrophic bacteria. The energy transfer from chemosynthetic bacteria to primary consumers can also occurs in simpler ways in the case of other species.

At the boundary of the hydrothermal community, different types of ordinary deep-sea primary consumers are also found. Their abnormally high density can easily be explained by a hypothetical advective mechanism concentrating food particles.

The existing data are not sufficient to discuss the origin and antiquity of the strictly adapted primary consumers from hydrothermal vents, and future investigations in other suitable fast spreading centers would be of great interest.

Keywords

Hydrothermal Vent Primary Consumer Larval Shell Guaymas Basin Hydrothermal Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arp, A.J. and Childress, J.J., 1981. Blood function in the hydrothermal vent vestimentiferan tube worm. Science, 213: 342–344.CrossRefGoogle Scholar
  2. Bachelet, G., 1981. Application de l’équation de Von Bertalanffy à la croissance du bivalve Scrobicularia plana. Cah. Biol. mar., 22: 291–311.Google Scholar
  3. Barker, J.F. and Fritz, P., 1981. Carbon isotop franctionation during microbial methane oxidation. Nature, 293 (5830): 289–291.CrossRefGoogle Scholar
  4. Boss, K.J. and Turner, R.D., 1980. The giant clam from the Galapagos rift, Calyptogena magnifica species novum. Malacologia, 20 (1): 161–194.Google Scholar
  5. Bouchet, P., 1976. Mise en évidence d’une migration de larves véligères entre l’étage abyssal et la surface. C.R. Acad. Sc. Paris, 283: 821–824.Google Scholar
  6. Boulègue, J., Pineau, F., Javoy, M., Perseil, E.A. (in press). Bacterial oxidation of pyrite from an East Pacific rise hydrothermal deposit. Nature.Google Scholar
  7. Cavanaugh, C.M., Gardiner, S.L., Jones, M.L., Jannash, H.W. and Waterbury, J.B., 1981. Prokariotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones possible chemoautrophic symbionts. Science, 213: 340–341.CrossRefGoogle Scholar
  8. Costopoulos, J.J., Stephens, G.C. and Wright, S.H., 1979. Uptake of amino acids by marine Polychaetes under anoxic conditions. Biol. Bull., 157: 434–444.CrossRefGoogle Scholar
  9. Craig, H., Welhan, J.A., Kim, K., Poreda, R. and Lupton, J.E., 1980. Geochemical studies of the 21° N EPR hydrothermal fuids. E.O.S., 61, 992.Google Scholar
  10. Degens, E.T., 1969. Biochemistry of stable carbon isotopes. In Organic Geochemistry, G. Englington and M.J.J. Murphy, Eds. Springer-Verlag, New-York, 1969, 304–329.CrossRefGoogle Scholar
  11. Desbruyères, D., Bervas, J.Y. and Khripounoff, A., 1980. Un cas de colonisation rapide d’un sédiment profond. Oceanologica Acta, 3 (3): 285–291.Google Scholar
  12. Desbruyères, D., Gaill, F., Laubier, L., Prieur, D. and Rau, G.H. (submitted). Unusual nutrition of the “Pompeii worm” (Alvinella pompejana, Polychaetous annelidI3 from 15a hydrothermal vent environment SEM, TEM, C and N evidence. Mar. Biol.Google Scholar
  13. Desbruyères, D. and Laubier, L., 1980. Alvinella pompejana gen. sp. nov., Ampharetidae aberrant des sources hydrothermales de la ride Est-Pacifique. Oceanologica Acta, 3 (3): 267–274.Google Scholar
  14. Desbruyères, D. and Laubier, L. (under press). Paralvinella grasslei, new genus, new species of Alvinellinae (Polychaeta, Ampharetidae) from the Galapagos rift geothermal vents. Proc. Biol. Soc. Wash.Google Scholar
  15. Disalvo, I.H., 1971. Ingestion and assimilation of bacteria by two scleractinian coral species. In Experimental Coelenterate biology. H.M. Lenhoff, L. Muscatine and L. V. Davis, University of Hawaii Press. Honolulu ed., 129–136.Google Scholar
  16. Enright, J.J., Newman, W.A., Hessler, R.R. and Mc Gowan, J.A., 1981. Deep-ocean hydrothermal vent communities. Nature, 289, 219–221.CrossRefGoogle Scholar
  17. Fatton, E., and Roux, M., 1981. Etapes de l’organisation microstructurale chez Calyptogena magnifica Boss et Turner, bivalve à croissance rapide des sources hydrothermales océaniques. C.R. Acad. Sc. Paris, 293: 63–68.Google Scholar
  18. Fatton, E., Marien, G., Pachiaudi, C., Rio, M. and Roux, M., 1982. Fluctuations de l’activité des sources hydrothermales océaniques (Pacifique Est, 21° N) enregistrées lors de la croissance des coquilles de Calyptogena magnifica (Lamellibranche, Vesicomydae) par les isotopes stables du carbone et de l’oxygène. C.R. Acad. Sc. Paris, 293: 701–706.Google Scholar
  19. Fauchald, K. and Jumars, P.A., 1979. The diet of worms: a study of Polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev., 17: 193–284.Google Scholar
  20. Felbeck, H., 1981. Chemoautotrophic potential of the hydrothermal vent tube worm Riftia pachyptila Jones (Vestimentifera). Science, 213: 336–338.CrossRefGoogle Scholar
  21. Felbeck, H., Childress, J.J. and Somero, G.N., 1981. Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature, 293, 5830: 291–293.CrossRefGoogle Scholar
  22. Ferguson, J.C., 1982. A comparative study of the net metabolic benefits derived from the uptake and release of free amino acids by marine invertebrates. Biol. Bull., 162: 1–17.CrossRefGoogle Scholar
  23. Fontugne, M.R. and Duplessy, J.C., 1981. Organic carbon isotopic fractionation by marine plankton in the temperature range–1 to 31°C. Oceanologica Acta, 4 (1): 85–90.Google Scholar
  24. Grassle, J.F., 1977. Slow recolonisation of deep-sea sediment. Nature, 265, 5595: 618–619.CrossRefGoogle Scholar
  25. Grassle, J.F. and Grassle, J.P., 1974. Opportunistic life histories and genetic systems in marine benthic Polychaetes. J. Mar. Res., 32, 2: 253–284.Google Scholar
  26. Haines, E.B. and Montague, C.L., 197913Foga sources of estuarine invertebrates analyzed using C/ C ratios. Ecology, 60 (1): 48–56.Google Scholar
  27. Hallock, P., 1981. Algal symbiosis: a mathematical analysis. Mar. Biol., 62: 249–255.CrossRefGoogle Scholar
  28. Jacques, G., 1981. Approche physiologique de la production primaire pélagique. Océanis, 7 (5): 511–530.Google Scholar
  29. Jannash, H.W. and Wirsen, C.O., 1979. Chemosynthetic primary production at East Pacific sea-floor spreading center. Bio-Science, 29 (10): 592–598.Google Scholar
  30. Jannash, H.W. and Wirsen, C.O., 1981. Morphological survey of microbial mats near deep-sea thermal vents. Appl. Environ. Microbiol., 41 (2): 528–538.Google Scholar
  31. Jones, M.L., 1981. Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galapagos rift geothermal vents (Pogonophora). Proc. Biol. Soc. Wash., 93 (4): 1295–1313.Google Scholar
  32. Jumars, P.A. and Gallagher, E.D. (under press). Deep-sea community structure: three plays on the benthic proscenium. In Ecosystem processes in the deep ocean, W.G. Ernst and J. Morin, Eds., Prentice-Hall, Englewood Cliffs, N.J. U.S.A.Google Scholar
  33. Lalou, C. and Brichet, E., 1981. Possibilités de datation des dépôts de sulfures métalliques hydrothermaux sous-marins par les descendants à vie courte de l’uranium et du thorium. C.R. Acad. Sc. Paris, 293: 821–824.Google Scholar
  34. Laubier, L., Desbruyères, D. and Chassard-Bouchaud, C. (under press). Evidence of sulfur accumulation in the epidermis of the polychaete Alvinella pompejana from deep-sea hydrothermal vents. A microanalytical study. Mar. Biol. Progr. ser.Google Scholar
  35. Lonsdale, P., 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Res., 24: 857–863.CrossRefGoogle Scholar
  36. Lutz, R.A., Jablonski, D., Rhoads, D.C. and Turner, R.D., 1980. Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos rift. Mar. Biol., 57: 127–133.CrossRefGoogle Scholar
  37. Mc Lean, J.H., 1981. The Galapagos rift limpet Neomphalus: Relevance to under-standing the evolution of a major paleozoic-mezozoic radiation. Malacologia, 21 (1–2), 291–336.Google Scholar
  38. Newman, W.A., 1979. A new scalpellid (Cirripedia): a Mesozoic relic living near an abyssal hydrothermal spring. Trans. San Diego Soc. Nat. Hist., 19 (11), 153–167.Google Scholar
  39. Rau, G.H., 1981. Low 15N/14N in hydrothermal vent animals: ecological implications. Nature, 289 (5797): 484–485.CrossRefGoogle Scholar
  40. Rau, G.H., 1981. Hydrothermal vent clam and tube worm 13C/12C: further evidence of non-photosynthetic food sources. Science, 213: 338–340.CrossRefGoogle Scholar
  41. Rau, G.H. and Hedges, J.I., 1979. Carbon-13 depletion in a hydrothermal vent mussel: suggestion of a chemosynthetic food source. Science, 203: 648–649.CrossRefGoogle Scholar
  42. Rhoads, D.C., Lutz, R.A., Revalas, E.P. and Cerrato, R.M., 1981. Growth of bivalves at deep-sea hydrothermal vents along the Galapagos rift. Science, 214: 911–933.CrossRefGoogle Scholar
  43. Sanders, H.L. and Hessler, R.R., 1969. Ecology of the deep-sea benthos. Science, 163: 1419–1424.CrossRefGoogle Scholar
  44. Sebens, K.P., 1981. The allometry of feeding, energetics and body size in three anemones species. Biol. Bull., 161: 152–171.CrossRefGoogle Scholar
  45. Southward, A.J., Southward, E.C., Brattegard, T. and Bakke, T., 1979. Further experiments on the value of dissolved organic matter as food for Siboglinum fiordicum (Pogonophora). J. mar. biol. Ass. U.K., 59: 133–148.CrossRefGoogle Scholar
  46. Southward, A.J., Southward, E.C., Dando, P.R., Rau, G.H., Fle3lbT5k, H. and Flugel, H., 1981. Bacterial symbionts and low C/ C ratios in tissues of Pogonophora indicate unusual nutrition and metabolism. Nature, 293 (5834): 616–620.CrossRefGoogle Scholar
  47. Turekian, K.K., Cochran, J.K., Kharkar, D.P., Cerrato, R.M., Vainys, J.R., Sanders, H.L., Grassle, J.F. and Allen, 1975. Slow growth rate of a deep-sea clam determined by ~2~Ra chronology. Proc. Nat. Acad. Sci. U.S.A., 72 (7): 2829–2832.CrossRefGoogle Scholar
  48. Turekian, K.K., Cochran, J.K. and Nazaki, Y., 1979. Growth rate of a clam from the Galapagos rise hot spring field using natural radionuclide ratios. Nature, 280: 385–387.CrossRefGoogle Scholar
  49. Turekian, K.K. and Cochran, J.K., 1981. Growth rate of a Vesicomyd clam from the Galapagos spreading center. Science, 214: 909–911.CrossRefGoogle Scholar
  50. Turner, R.D., 1973. Wood-boring bivalves, opportunistic species in the deep-sea. Science, 180: 1377–1379.CrossRefGoogle Scholar
  51. Van Praet, M. (under press). Régime alimentaire des Actinies. Bull. Soc. Zool. France.Google Scholar
  52. Wells, R.M.G. and Pankhurst, N.W., 1980. An investigation into the formation of sulphide and oxidation compounds from the haemoglobins of the lugworm Abarenicola affinis (Ashworth). Comp. Biochem. Physiol., 664: 255–259.Google Scholar
  53. Williams, P.M., Smith, K.L., Druffel, E.M. and Linick, T.W., 1981. Dietary carbon sources of mussels and tubeworms Uom Galapagos hydrothermal vents determined from tissue 14C activity. Nature, 292: 448–449.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • D. Desbruyeres
    • 1
  • L. Laubier
    • 1
  1. 1.Centre Océanologique de BretagneBrest CédexFrance

Personalised recommendations